精英家教网 > 高中数学 > 题目详情

如图,正四棱柱ABCD-A1B1C1D1(即底面为正方形的直四棱柱)中,AA1=2AB=4,点 E 在 CC1 上且 C1E=3EC.
(1)证明:A1C丄平面BED;
(2)求直线A1C与平面A1DE所成角的正弦值.

(1)证明:如图,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
则A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)




∴A1C丄平面BED.
(2)解:∵
设平面A1DE的法向量为


=(-2,2,-4),
设直线A1C与平面A1DE所成角为θ,
则sinθ=|cos<>|=||=
∴直线A1C与平面A1DE所成角的正弦值为
分析:(1)以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则,由向量法能够证明A1C丄平面BED.
(2)由,求出平面A1DE的法向量,取=(-2,2,-4),
设直线A1C与平面A1DE所成角为θ,由sinθ=|cos<>|能求出直线A1C与平面A1DE所成角的正弦值.
点评:本题考查直线与平面垂直的证明和求直线与平面所成角的正弦值的求法,解题时要认真审题,合理地建立空间直角坐标系,注意向量法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.

(1)求证:AC1∥平面CNB1

(2)求四棱锥C-ANB1A1的体积.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

同步练习册答案