精英家教网 > 高中数学 > 题目详情
14.已知P,Q分别在曲线$\frac{x^2}{9}+\frac{y^2}{8}=1$、(x-1)2+y2=1上运动,则|PQ|的取值范围[1,5].

分析 求出椭圆的右焦点坐标,利用椭圆的性质求解即可.

解答 解:曲线$\frac{x^2}{9}+\frac{y^2}{8}=1$是椭圆,右焦点坐标(1,0),(x-1)2+y2=1的圆心坐标(1,0)半径为1,
圆心与椭圆的右焦点坐标重合,由椭圆的性质可得,椭圆上的点到焦点的距离的范围是[2,4],
P,Q分别在曲线$\frac{x^2}{9}+\frac{y^2}{8}=1$、(x-1)2+y2=1上运动,则|PQ|的取值范围:[1,5].
故答案为:[1,5].

点评 本题考查椭圆的简单性质的应用,考查椭圆与圆的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow m=(a,b,0),\overrightarrow n=(c,d,1)$其中a2+b2=c2+d2=1,现有以下命题:
(1)向量$\overrightarrow n$与z轴正方向的夹角恒为定值(即与c,d无关 );
(2)$\overrightarrow m•\overrightarrow n$的最大值为$\sqrt{2}$;
(3)$\left?{\overrightarrow m,\overrightarrow n}\right>$($\overrightarrow m•\overrightarrow n$的夹角)的最大值为$\frac{3π}{4}$;
(4)若定义$\overrightarrow u×\overrightarrow v=|{\overrightarrow u}|•|{\overrightarrow v}|sin\left?{\overrightarrow u,\overrightarrow v}\right>$,则$|{\overrightarrow m×\overrightarrow n}|$的最大值为$\sqrt{2}$.
其中正确的命题有(1)(3)(4).(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等边△ABC的边长为$2\sqrt{3}$,平面内一点M满足$\overrightarrow{CM}=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}$,则$\overrightarrow{MA}•\overrightarrow{MB}$等于(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设奇函数f(x)在区间[-7,-3]上是减函数且最大值为-5,函数g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判断并用定义法证明函数g(x)在(-2,+∞)上的单调性;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=ax3+x在区间[1,+∞)内是减函数,则(  )
A.a≤0B.$a≤-\frac{1}{3}$C.a≥0D.$a≥-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2x2-lnx在其定义域内的一个子区间[k-1,k+1]内不是单调函数,则实数k的取值范围是(  )
A.[1,2)B.(1,2)C.$[{1,\frac{3}{2}})$D.$({1,\frac{3}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线E:y2=2px(p>0)的焦点F,E上一点(3,m)到焦点的距离为4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过F作直线l,交抛物线E于A,B两点,若直线AB中点的纵坐标为-1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆心为C(0,-2),且被直线2x-y+3=0截得的弦长为$4\sqrt{5}$,则圆C的方程为x2+(y+2)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列各式的值:
(Ⅰ)$|{1+lg0.001}|+\sqrt{{{lg}^2}\frac{1}{3}-4lg3+4}+lg6-lg0.02$.
(Ⅱ)${(-\frac{27}{8})^{-\frac{2}{3}}}+{0.002^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{(2-\sqrt{3})^0}$.

查看答案和解析>>

同步练习册答案