【题目】已知函数f(x)=log ( )满足f(﹣2)=1,其中a为实常数.
(1)求a的值,并判定函数f(x)的奇偶性;
(2)若不等式f(x)>( )x+t在x∈[2,3]上恒成立,求实数t的取值范围.
【答案】
(1)解:∵函数f(x)=log ( )满足f(﹣2)=1,
∴log ( )=1,
∴ = ,
解得:a=﹣1,
∴f(x)=log ( )的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称;
又∵f(﹣x)=log ( )=log ( )=﹣log ( )=﹣f(x),
故函数f(x)为奇函数
(2)解:若不等式f(x)>( )x+t在x∈[2,3]上恒成立,
则t<log ( )﹣( )x在x∈[2,3]上恒成立,
设g(x)=log ( )﹣( )x,
则g(x)在[2,3]上是增函数.
∴g(x)>t对x∈[2,3]恒成立,
∴t<g(2)=﹣
【解析】(1)根据f(﹣2)=1,构造方程,可得a的值,结合奇偶性的宝义,可判定函数f(x)的奇偶性;(2)若不等式f(x)>( )x+t在x∈[2,3]上恒成立,则t<log ( )﹣( )x在x∈[2,3]上恒成立,构造函数求出最值,可得答案.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对其30位亲属的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).
(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.
(2)根据以上数据完成如下2×2列联表.
(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=kcn﹣k(其中c,k为常数),且a2=4,a6=8a3 .
(1)求an;
(2)求数列{nan}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′中,AA′=2AC=2BC,E为AA′的中点,C′E⊥BE.
(1)求证:C′E⊥平面BCE;
(2)求直线AB′与平面BEC′所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com