精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)若函数f(x)在区间(a,a+ )(a>0)上存在极值点,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥ 恒成立,求实数k的取值范围.

【答案】
(1)解:函数f(x)定义域为(0,+∞), f,

由f′(x)=0x=1,当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,

则f(x)在(0,1)上单增,在(1,+∞)上单减,

所以函数f(x)在x=1处取得唯一的极值.

由题意得 ,故所求实数a的取值范围为


(2)解:当x≥1时,不等式

,由题意,k≤g(x)在[1,+∞)恒成立.

令h(x)=x﹣lnx(x≥1),则 ,当且仅当x=1时取等号.

所以h(x)=x﹣lnx在[1,+∞)上单调递增,h(x)≥h(1)=1>0

因此 ,则g(x)在[1,+∞)上单调递增,g(x)min=g(1)=2

所以k≤2,即实数k的取值范围为(﹣∞,2].


【解析】(1)求导数,确定函数f(x)在x=1处取得极大值,根据函数在区间(a,a+ )(a>0)上存在极值点,可得 ,即可求实数a的取值范围;(2)当x≥1时,分离参数,构造 ,证明g(x)在[1,+∞)上是单调递增,所以[g(x)]min=g(1)=2,即可求实数k的取值范围.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)=a+ (a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a﹣2b=(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在圆心角为90°的扇形AOB中,以圆心O作为起点作射线OC,OD,则使∠AOC+∠BOD<45°的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),则a,b,c的大小关系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,f(x)=( x﹣6,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,求实数a的取值范围是(
A.(1,2)
B.(2,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) =﹣k + ,m∈R,k、t为正实数.
(1)若 ,求m的值;
(2)若 ,求m的值;
(3)当m=1时,若 ,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

是否需要志愿 性别

需要

40

30

不需要

160

270

  1. 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
  2. 能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
  3. 根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C1:(x﹣1)2+y2=2,圆C2:(x﹣m)2+(y+m)2=m2 . 圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是

查看答案和解析>>

同步练习册答案