精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4x2-4mx+m2-2m+2的图象与x轴有两个交点
(1)设两个交点的横坐标分别为x1,x2,试判断函数g(m)=x12+x22有没有最大值或最小值,并说明理由.
(2)若f(x)=4x2-4mx+m2-2m+2与g(x)=
mx
在区间[2,3]上都是减函数,求实数m的取值范围.
分析:(1)由函数f(x)图象与x轴有两个交点可得m的范围,由韦达定理可得x1+x2=m,x1x2=
m2-2m+2
4
,从而g(m)可表示为m的函数,根据二次函数性质可判断其最值情况;
(2)由题意可得:
m>0
m>1
-
-4m
2×4
≥3
,解出即可;
解答:解:由△=16m2-16(m2-2m+2)>0,得m>1,
(1)∵x1+x2=m,x1x2=
m2-2m+2
4

∴g(m)=x12+x22=(x1+x2)2-2x1x2=m2-
m2-2m+2
2
=
(m+1)2-3
2

∵m>1,∴g(m)没有最大值,也没有最小值;
(2).依题意得:
m>0
m>1
-
-4m
2×4
≥3
,解得m≥6.
所以实数m的取值范围为:m≥6.
点评:本题考查二次函数的单调性、最值问题,深刻理解“三个二次”间的关系是解决该类问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
4+
1
x2
,数列{an},点Pn(an,-
1
an+1
)在曲线y=f(x)上(n∈N+),且a1=1,an>0.
( I)求数列{an}的通项公式;
( II)数列{bn}的前n项和为Tn且满足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
4-x2
在区间M上的反函数是其本身,则M可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4+ax-1(a>0且a≠1)的图象恒过定点P,则P点的坐标是
(1,5)
(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x
的定义域为A,B={x|2x+3≥1}.
(1)求A∩B;
(2)设全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),数列{an}满足an=f(n)(n∈N*),且{an}是单调递增数列,则实数a的取值范围(  )

查看答案和解析>>

同步练习册答案