精英家教网 > 高中数学 > 题目详情
3.已知条件p:(x-m)(x-m-3)>0;条件q:x2+3x-4<0.若p是q的必要不充分条件,则实数m的取值范围是(  )
A.(-∞,-7)∪(1,+∞)B.(-∞,-7]∪[1,+∞)C.(-7,1)D.[-7,1]

分析 分别解出p,q的不等式,根据p是q的必要不充分条件,即可得出.

解答 解:条件p:(x-m)(x-m-3)>0;解得:m+3<x,或x<m.
条件q:x2+3x-4<0.解得-4<x<1,
∵p是q的必要不充分条件,∴1≤m,或m+3≤-4,解得m≥1或m≤-7.
则实数m的取值范围是(-∞,-7]∪[1,+∞).
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设点P在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是(  )
A.$({1,\frac{5}{3}}]$B.(1,2]C.$[{\frac{5}{3},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点为F1,F2,P为椭圆椭圆上任一点,则|PF1|•|PF2|的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=|sinπx|,则f(1)+f(2)+f(3)+…+f(2010)=(  )
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=3sin (2x-$\frac{π}{3}$) 的图象为C.
①图象C关于直线x=$\frac{11}{12}$π对称;
②函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$) 内是增函数;
③由y=3sin 2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.
以上三个论断中,正确论断的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,则双曲线C的虚轴长为(  )
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.两个好朋友相约周天在9点到10点到银川市图书馆看书,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(\frac{1}{x})={x^2}-\frac{2}{x}+lnx(x>0)$,则f'(1)=(  )
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)如图1,在平行四边形ABCD中,点E是对角线DB的延长线上一点,且OB=BE.记$\overrightarrow{AB}=\overrightarrow a\;,\;\overrightarrow{AD}=\overrightarrow b$,试用向量$\overrightarrow a\;,\;\overrightarrow b$表示$\overrightarrow{AE}$.
(2)若正方形ABCD边长为1,点P在线段AC上运动,求$\overrightarrow{AP}•(\overrightarrow{PB}+\overrightarrow{PD})$的取值范围.
(3)设$\overrightarrow{OA}=\;\overrightarrow a,\;\overrightarrow{OB}=\overrightarrow b$,已知$\overrightarrow a•\overrightarrow b=|{\overrightarrow a-\overrightarrow b}|=2$,当△AOB的面积最大时,求∠AOB的大小.

查看答案和解析>>

同步练习册答案