精英家教网 > 高中数学 > 题目详情

【题目】在正四面体P﹣ABC中,点M是棱PC的中点,点N是线段AB上一动点,且 ,设异面直线 NM 与 AC 所成角为α,当 时,则cosα的取值范围是

【答案】[ , ]
【解析】解:设P到平面ABC的射影为点O,取BC中点D,

以O为原点,在平面ABC中,以过O作DB的平行线为x轴,

以OD为y轴,以OP为z轴,建立空间直角坐标系,如图,

设正四面体P﹣ABC的棱长为4

则A(0,﹣4,0),B(2 ,2,0),C(﹣2 ,2,2 ),P(0,0,4 ),M(﹣ ,1,2 ),

,得N( ),

=(﹣ ,5﹣6λ,2 ), =(﹣2 ,6,0),

∵异面直线 NM 与 AC 所成角为α,

∴cosα= = ,设3﹣2λ=t,则

∴cosα= =

∴cosα的取值范围是[ ].

故答案为:[ ].

设P到平面ABC的射影为点O,取BC中点D,以O为原点,在平面ABC中,以过O作DB的平行线为x轴,以OD为y轴,以OP为z轴,建立空间直角坐标系,利用向量法能求出cosα的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格. (Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为 ,比较 的大小(直接写出结果,不写过程);
(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;
(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为 . (Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为

A.30° B.45°

C.60° D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图.

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|=

(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x﹣1)的定义域是(
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出上表数据的散点图.

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

(参考数值:3×2.54×35×46×4.566.5

查看答案和解析>>

同步练习册答案