£¨2013•·îÏÍÇøһģ£©µÈ±ÈÊýÁÐ{cn}Âú×ãcn+1+cn=10•4n-1£¬n¡ÊN*£¬ÊýÁÐ{an}Âú×ãcn=2an
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{bn}Âú×ãbn=
1
anan+1
£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®Çó
lim
n¡ú¡Þ
Tn
£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬c1+c2=10£¬c2+c3=40£¬½áºÏµÈ±ÈÊýÁеÄͨÏʽ¿ÉÇ󹫱Èq¼°c1£¬´úÈëµÈ±ÈÊýÁеÄͨÏʽ¿ÉÇócn£¬È»ºóÓÉcn=2an¿ÉÇóan£¬
£¨2£©ÓÉbn=
1
anan+1
=
1
(2n-1)(2n+1)
£¬¿¼ÂÇÀûÓÃÁÑÏîÇóºÍ¼´¿ÉÇó½âTn£¬½ø¶ø¿ÉÇó
lim
n¡ú¡Þ
Tn

£¨3£©¼ÙÉè·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬½áºÏ£¨2£©´úÈë¿ÉµÃ
3
n
=
-2m2+4m+1
m2
£¾0
£¬½â²»µÈʽ¿ÉÇómµÄ·¶Î§£¬È»ºó½áºÏm¡ÊN*£¬m£¾1¿ÉÇó
½â´ð£º½â£º£¨1£©½â£ºÓÉÌâÒâ¿ÉµÃ£¬c1+c2=10£¬c2+c3=c1q+c2q=40£¬
ËùÒÔ¹«±Èq=4£¨2·Ö£©
¡àc1+4c1=10
¡àc1=2£¨3·Ö£©
ÓɵȱÈÊýÁеÄͨÏʽ¿ÉµÃ£¬cn=2•4n-1=22n-1£¨4·Ö£©
¡ßcn=2an=22n-1
¡àan=2n-1£¨15·Ö£©
£¨2£©¡ßbn=
1
anan+1
=
1
(2n-1)(2n+1)

¡àbn=
1
2
(
1
2n-1
-
1
2n+1
)
£¨6·Ö£©
ÓÚÊÇTn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+¡­+(
1
2n-1
-
1
2n+1
)]=
n
2n+1
£¨8·Ö£©
¡à
lim
n¡ú¡Þ
Tn
=
1
2
£¨10·Ö£©
£¨3£©¼ÙÉè·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬
Ôò(
m
2m+1
)2=
1
3
n
2n+1
£¬£¨12·Ö£©
¿ÉµÃ
3
n
=
-2m2+4m+1
m2
£¾0
£¬
ÓÉ·Ö×ÓΪÕý£¬½âµÃ1-
6
2
£¼m£¼1+
6
2
£¬
ÓÉm¡ÊN*£¬m£¾1£¬µÃm=2£¬´Ëʱn=12£¬
µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬T1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®             £¨16·Ö£©
˵Ã÷£ºÖ»ÓнáÂÛ£¬m=2£¬n=12ʱ£¬T1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®ÈôѧÉúûÓÐ˵Ã÷ÀíÓÉ£¬ÔòÖ»Äܵà13·Ö
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽµÄÓ¦Óã¬ÊýÁеÄÁÑÏîÇóºÍ·½·¨µÄÓ¦Óã¬ÊôÓÚÊýÁÐ֪ʶµÄ×ÛºÏÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªx£¾0£¬y£¾0£¬ÇÒ
2
x
+
1
y
=1
£¬Èôx+2y£¾m2+2mºã³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
-4£¼m£¼2
-4£¼m£¼2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS6£¾S7£¾S5£¬ÓÐÏÂÁÐËĸöÃüÌ⣬¼ÙÃüÌâµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS5£¼S6£¬S6=S7£¾S8£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÈÎÒâÁ½µãP1£¨x1£¬y1£©ÓëP2£¨x2£¬y2£©µÄ¡°·Ç³£¾àÀ롱¸ø³öÈç϶¨Ò壺Èô|x1-x2|¡Ý|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|£¬Èô|x1-x2|£¼|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|y1-y2|£®ÒÑÖªCÊÇÖ±Ïßy=
3
4
x+3ÉϵÄÒ»¸ö¶¯µã£¬µãDµÄ×ø±êÊÇ£¨0£¬1£©£¬ÔòµãCÓëµãDµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵÊÇ
8
7
8
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸