精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级有男生人,学号为;女生人,学号为.对高三学生进行问卷调查,按学号采用系统抽样的方法,从这名学生中抽取人进行问卷调查(第一组采用简单随机抽样,抽到的号码为);再从这名学生中随机抽取人进行数据分析,则这人中既有男生又有女生的概率是( )

A.B.C.D.

【答案】D

【解析】

利用系统抽样可知,这个人中男生有人,女生有人,计算出所抽人全是男生或女生的概率,利用对立事件的概率公式可计算出结果.

利用系统抽样从这名学生中抽取人进行问卷调查,分段间隔为

由于第一组抽到的号码为,所抽取的人号码依次为,其中男生人,女生人,

因此,从这名学生中随机抽取人进行数据分析,则这人中既有男生又有女生的概率是.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形中,已知,点分别在边上,且,将梯形沿折起,使在平面上的射影恰好落在线段靠近的三等分点处,得到图2中的立体图形.

12

1)在图2中,求证:平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成6组,并绘制出如下的频率分布直方图.

1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;

2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为组男、女人数之比为.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在椭圆上任取一点不为长轴端点),连结,并延长与椭圆分别交于点两点,已知的周长为8面积的最大值为.

1)求椭圆的方程;

2)设坐标原点为,当不是椭圆的顶点时,直线和直线的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求证:

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的极值;

(2)若,都有成立,求k的取值范围.

查看答案和解析>>

同步练习册答案