精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.

(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;

(Ⅱ)求二面角M-BC′-B′的大小; 

本小题主要考查异面直线、直线与平面垂直、二面角、正方体等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。

解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK

因为M是棱AA’的中点,点O是BD’的中点

所以AM

所以MO

由AA’⊥AK,得MO⊥AA’  

因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’

所以AK⊥BD’

所以MO⊥BD’

又因为OM是异面直线AA’和BD’都相交

故OM为异面直线AA'和BD'的公垂线…………6分

(2)取BB’中点N,连结MN,则MN⊥平面BCC’B’

过点N作NH⊥BC’于H,连结MH

则由三垂线定理得BC’⊥MH

从而,∠MHN为二面角M-BC’-B’的平面角

MN=1,NH=Bnsin45°=

在Rt△MNH中,tan∠MHN=

故二面角M-BC’-B’的大小为arctan2…………………………………………12分

解法二:

以点D为坐标原点,建立如图所示空间直角坐标系D-xyz

则A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)

(1)因为点M是棱AA’的中点,点O是BD’的中点

所以M(1,0, ),O(,,)

,=(0,0,1),=(-1,-1,1)

=0, +0=0

所以OM⊥AA’,OM⊥BD’

又因为OM与异面直线AA’和BD’都相交

故OM为异面直线AA'和BD'的公垂线.………………………………6分

(2)设平面BMC'的一个法向量为=(x,y,z)  

=(0,-1,), =(-1,0,1)

  即

取z=2,则x=2,y=1,从而=(2,1,2)

取平面BC'B'的一个法向量为=(0,1,0)

cos

由图可知,二面角M-BC'-B'的平面角为锐角 

故二面角M-BC'-B'的大小为arccos………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案