精英家教网 > 高中数学 > 题目详情

【题目】已知⊙C经过点两点,且圆心C在直线上.

(1)求⊙C的方程;

(2)若直线与⊙C总有公共点,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:

(1)解法1由题意利用待定系数法可得⊙C方程为.

解法2:由题意结合几何关系确定圆心坐标和半径的长度可得⊙C的方程为.

(2)解法1利用圆心到直线的距离与圆的半径的关系得到关系k的不等式,求解不等式可得.

解法2联立直线与圆的方程,结合可得.

试题解析:

(1)解法1:设圆的方程为

所以⊙C方程为.

解法2:由于AB的中点为

则线段AB的垂直平分线方程为

而圆心C必为直线与直线的交点,

解得,即圆心,又半径为

故⊙C的方程为.

(2)解法1:因为直线与⊙C总有公共点,

则圆心到直线的距离不超过圆的半径,即

将其变形得

解得.

解法2:由

因为直线与⊙C总有公共点,则

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,侧面是边长为4的等边三角形,底面为菱形,侧面与底面所成的二面角为.

(1)求点到平面的距离;

(2)若的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为),上一点,以为边作等边三角形,且三点按逆时针方向排列.

(Ⅰ)当点上运动时,求点运动轨迹的直角坐标方程;

(Ⅱ)若曲线 ,经过伸缩变换得到曲线,试判断点的轨迹与曲线是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点轴平行的直线与抛物线交于点.

(Ⅰ)求点的坐标;

(Ⅱ)证明直线恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点为,左,右顶点为,过点

直线分别交椭圆于点.

(1)设动点,满足,求点的轨迹方程;

(2)当时,求点的坐标;

(3)设,求证:直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,若EF= , 则AD与BC所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)设函数,当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(Ⅰ)求函数的单调区间;

(Ⅱ)记过函数两个极值点的直线的斜率为,问函数是否存在零点,请说明理由.

查看答案和解析>>

同步练习册答案