精英家教网 > 高中数学 > 题目详情

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)

(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

(1),(2)当时,绿化带总长度最大.

解析试题分析:(1)解实际问题应用题,关键正确理解题意,正确列出等量关系或函数关系式.本题要注意着重号. 绿化带总长度等于2AC与弧长BC之和. 在直角三角形中,,所以.由于,所以弧的长为.所以,作为函数解析式,必须明确其定义域,.(2)利用导数求最大值. 令,则,列表分析可知当时,取极大值,即为最大值.
【解】(1)如图,连接,设圆心为,连接
在直角三角形中,
所以
由于,所以弧的长为.         3分
所以
.                           7分
(2),                                  9分
,则,                                       11分
列表如下:






+
0



极大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数满足(其中在点处的导数,为常数).
(1)求函数的单调区间
(2)设函数,若函数上单调,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,且为自然对数的底数.
(1)已知,求处的切线方程;
(2)若存在,使得成立,求的取值范围;
(3)设函数为坐标原点,若对于时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)若对于任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象在处的切线与轴平行,求的值;
(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(Ⅰ)若曲线在点处的切线与直线平行,求的值;
(Ⅱ)记,且.求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其图象与轴交于两点,且x1x2
(1)求的取值范围;
(2)证明:为函数的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.

查看答案和解析>>

同步练习册答案