【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.
(1)求椭圆的方程;
(2)过点且不垂直于轴的直线与椭圆交于两点,点关于轴的对称点为.证明:直线与轴的交点为.
【答案】(1) ;(2) 详见解析.
【解析】试题分析:(1)由题意可得:a=2c,又a2=3+c2,解得a2即可得出椭圆M的方程;(2)设直线PQ的方程为:y=k(x-4)(k≠0),代入椭圆方程可得:(3+4k2)x2-32k2x+64k2-12=0,设P(x1,y1),Q(x2,y2),E(x2,-y2),直线PE的方程为: ,令y=0,可得 ,把根与系数的关系代入即可证明.
试题解析:
(1)由题意得椭圆的焦点在轴上,∵椭圆关于直线对称的图形过坐标原点,∴,∵,∴,解得.∴椭圆的方程为.
(2)证明:易知直线的斜率必存在,设直线的方程为,代入得,由得, .设, , ,则, ,则直线的方程为.令得 ,∴直线过定点,又的右焦点为,∴直线与轴的交点为.
科目:高中数学 来源: 题型:
【题目】设x∈R,定义符号函数sgnx= ,则( )
A.|x|=x|sgnx|
B.|x|=xsgn|x|
C.|x|=|x|sgnx
D.|x|=xsgnx
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆与的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,与的四个焦点构成的四边形面积是.
(1)求椭圆与的方程;
(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点,的连线,分别与椭圆交于,点.
(i)求证:直线,斜率之积为常数;
(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】机器人(阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.
下面的算法是寻找“”中“比较大的数”,现输入正整数“42,61,80,12,79,18,82,57,31,18“,从左到右依次为,其中最大的数记为,则 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)当x∈[0, ]时,求| + |的取值范围;
(2)若g(x)=( + ) ,求当k为何值时,g(x)的最小值为﹣ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)若在上单调递增,求的取值范围;
(2)令,将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象.区间满足:在上至少含有30个零点.在所有满足上述条件的中,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·
乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.
(Ⅰ)求实数的值;
(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com