【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组 | 频数 | 频率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合计 | 100 | 1.00 |
(1)求的值及随机抽取一考生恰为优秀生的概率;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在的概率.
【答案】(Ⅰ)0.4.(Ⅱ)8人.(Ⅲ) .
【解析】试题分析:(Ⅰ)由频率分布表,列出方程,求得的值,即可求解概率;
(Ⅱ)根据分层抽样,直接求解即可.
(Ⅲ)根据题意求得基本事件的总数,利用古典概型概率的求解公式,即可求解概率值.
试题解析:
(Ⅰ)由频率分布表得: ,解得a=20,b=0.35,
由频率分布表可得随机抽取一考生恰为优秀生的概率为:P=0.25+0.15=0.4.
(Ⅱ)按成绩分层抽样抽取20人时,优秀生应抽取20×0.4=8人.
(Ⅲ)8人中,成绩在[80,90)的有:20×0.25=5人,成绩在[90,100]的有:20×0.15=3
人,从8个人中选2个人,结果共有n==28种选法,
其中至少有一人成绩在[90,100]的情况有两种:
可能有1人成绩在[90,100],也可能有2人成绩在[90,100],所以共有5×3+3=18种,
∴至少一人的成绩在[90,100]的概率.
科目:高中数学 来源: 题型:
【题目】为美化小区环境,某社区针对公民乱扔垃圾的现象进行了罚款处罚,并随机抽取了200人进行调查,得到如下数据:
(1)若乱扔垃圾的人数与罚款金额(单位:元)满足线性回归关系,求回归方程;
(2)由(1)得到的回归方程分析要使乱扔垃圾的人数不超过,罚款金额至少是多少元?
参考公式:两个具有线性关系的变量的一组数据: ,
其回归方程为,其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, (为自然对数的底数).
(1)设曲线在处的切线为,若与点的距离为,求的值;
(2)若对于任意实数, 恒成立,试确定的取值范围;
(3)当时,函数在上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)请用相关系数加以说明与之间存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).
附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:
,,相关系数公式为:.
参考数据:
,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校计划面向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有65人.在这124名学生中选修社会科学类的男生有22人、女生有40人.
(1)根据以上数据完成下列列联表;
(2)判断能否有99.9%的把握认为科类的选修与性别有关?
附: ,其中
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:现采用分层抽样的方法抽取容量为20的样本.
(1)其中课外体育锻炼时间在分钟内的学生应抽取多少人?
(2)若从(1)中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在分钟内的概率.
锻炼时间(分钟) | ||||||
人数 | 40 | 60 | 80 | 100 | 80 | 40 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com