精英家教网 > 高中数学 > 题目详情

【题目】过 轴上动点 引抛物线 的两条切线 为切点,设切线 的斜率分别为 .

(Ⅰ)求证:
(Ⅱ)求证:直线 恒过定点,并求出此定点坐标;

【答案】解:(Ⅰ)设过 与抛物线 的相切的直线的斜率是
则该切线的方程为: ,由

都是方程 的解,故
(Ⅱ)法1:设
故切线 的斜率是 ,方程是
所以方程可化为
切线 的斜率是 ,方程是
所以方程可化为
又由于 点在AP上,则
又由于 点在AQ上,则

则直线PQ的方程是 ,则直线PQ过定点 .
法2:设 , 所以,
直线PQ:
,由(1)知
所以,直线PQ的方程是 ,则直线PQ过定点 .
【解析】(1)设出过A点的直线,联立抛物线,已知直线与抛物线相切,故,再利用韦达定理可以得到结果。
(2)先设出P,Q两点的坐标,求出PQ直线方程,即可知定点坐标。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部 45 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加书法社团

2

30

(1)从该班随机选 1 名同学,求该同学至少参加上述一个社团的概率;

(2)在既参加书法社团又参加演讲社团的 8 名同学中,有 5 名男同学,3名女同学.现从这 5 名男同学和 3 名女同学中各随机选 1 人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为两个定点, 的一条切线,若过 两点的抛物线以直线 为准线,则该抛物线的焦点的轨迹方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14)

已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

(Ⅲ) 如果对任意正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角ABC中,内角所对应的边分别为,且满足:,则的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数 = 的图象过点 ,且在 处的切线方程为 .求 的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点 ,离心率为 ,左、右焦点分别为
(1)求椭圆的方程;
(2)若直线 与椭圆交于A,B两点,与以 为直径的圆交于C,D两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若函数 处有极值 ,求 的值;
(2)若对于任意的 上单调递增,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?

查看答案和解析>>

同步练习册答案