精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左顶点为,右焦点为,点在椭圆上.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,直线分别与轴交于点,在轴上,是否存在点,使得无论非零实数怎样变化,总有为直角?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1);(2)存在点,使得无论非零实数怎么变化,总有为直角,点坐标为.

【解析】试题分析:(1)依题意,,结合点在椭圆上及,即可求得椭圆的方程;(2)设,则,联立直线与椭圆的方程,求得,根据所在直线方程,即可分别得到的坐标,结合为直角,列出等式,即可求解.

试题解析:(1)依题意,.

∵点上,

又∵

∴椭圆方程为

(2)假设存在这样的点,设,则,联立,解得

所在直线方程为

同理可得.

∴存在点,使得无论非零实数怎么变化,总有为直角,点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于集合和常数,定义:为集合相对的“余弦方差”.

(1)若集合,求集合相对的“余弦方差”;

(2)求证:集合相对任何常数的“余弦方差”是一个与无关的定值,并求此定值;

(3)若集合,相对任何常数的“余弦方差”是一个与无关的定值,求出.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,判断的单调性;

(Ⅱ)当时,恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,点中点.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基因编辑婴儿“露露”和“娜娜”出生的消息成了全球瞩目的焦点,为了解学生对基因编辑婴儿的看法,某中学随机从该校一年级学生中抽取了100人进行调查,抽取的45女生中赞成基因编辑婴儿的占,而55名男生中有10人表示赞成基因编辑婴儿.

(1)完成列联表,并回答能否有90%的把握认为“对基因编辑婴儿是否赞成与性别有关”?

(2)现从该校不赞成基因编辑婴儿的学生中,采用分层抽样的方法抽取7名学生,再从被抽取的7名学生中任取3人,记被抽取的3名学生女生的人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为)中,采用分层抽样的方法抽取名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这名同学的数据,按照以下区间分为八组:

,②,③,④,⑤,⑥,⑦,⑧

得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于分的人数为人.

(1)求的值及频率分布直方图中第④组矩形条的高度;

(2)如果把“学生数学成绩不低于分”作为是否达标的标准,对抽取的名学生,完成下列列联表:

据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?

(3)若从该校的高二年级学生中随机抽取人,记这人中成绩不低于分的学生人数为,求的分布列、数学期望和方差

附1:“列联表”的卡方统计量公式:

附2:卡方()统计量的概率分布表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求的图象在处的切线方程;

(Ⅱ)若函数图象在上有两个不同的交点,求实数的取值范围.

查看答案和解析>>

同步练习册答案