精英家教网 > 高中数学 > 题目详情
若8cos(+α)cos(-α)=1,则sin4α+cos4α=______________.

解析:由已知得8sin(-α)cos(-α)=1,

    ∴4sin(-2α)=1.

    ∴cos2α=.

    sin4α+cos4α=(sin2α+cos2α)2-2sin2αcos2α=1-sin22α=1-(1-cos22α)=1-(1-)=1-×=.

答案:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数
8
cosθ
≤16
,t满足不等式s2-2s≥t2-2t,若1<s<4,则
t
s
的取值范围是(  )
A、bc≤16
B、(-
1
4
,1]
C、[-
1
2
,1]
D、(-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知极点、极轴分别与直角坐标系的原点和x轴正半轴重合,且极坐标系与直角坐标系单位相同,若曲线C的极坐标方程是ρ=8cosθ-6sinθ(θ∈R),则曲线C的直角坐标普通方程是
x2+y2-8x+6y=0
x2+y2-8x+6y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网选作题:考生任选一题作答,如果多做,则按所做的第一题计分.
A 如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(I)证明:△ABE∽△ADC
(II)若△ABC的面积S=
1
2
AD•AE
,求∠BAC的大小.
B 已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.                
C 已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏五校高三下学期期初教学质量调研数学卷(解析版) 题型:解答题

 

A.(几何证明选讲选做题)

如图,已知AB为圆O的直径,BC切圆O于点BAC交圆O于点PE为线段BC的中点.求证:OPPE

B.(矩阵与变换选做题)

已知MN,设曲线y=sinx在矩阵MN对应的变换作用下得到曲线F,求F的方程.

C.(坐标系与参数方程选做题)

在平面直角坐标系xOy中,直线m的参数方程为t为参数);在以O为极点、射线Ox为极轴的极坐标系中,曲线C的极坐标方程为ρsinθ=8cosθ.若直线m与曲线C交于AB两点,求线段AB的长.

D.(不等式选做题)

xy均为正数,且xy,求证:2x≥2y+3.

 

查看答案和解析>>

科目:高中数学 来源:2009年上海市黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知极点、极轴分别与直角坐标系的原点和x轴正半轴重合,且极坐标系与直角坐标系单位相同,若曲线C的极坐标方程是ρ=8cosθ-6sinθ(θ∈R),则曲线C的直角坐标普通方程是   

查看答案和解析>>

同步练习册答案