精英家教网 > 高中数学 > 题目详情

已知函数(其中为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ) 当时,设函数的3个极值点为,且.

证明:.

 

【答案】

(Ⅰ)单调减区间为,;增区间为.

(Ⅱ)利用导数研究得到,所以

时,

∴ 函数的递增区间有,递减区间有

此时,函数有3个极值点,且

时,

通过构造函数,证得当时,.

【解析】

试题分析:(Ⅰ)

可得.列表如下:

-

-

0

+

极小值

单调减区间为,;增区间为.  5分

(Ⅱ)由题,

对于函数,有

∴函数上单调递减,在上单调递增

∵函数有3个极值点

从而,所以

时,

∴ 函数的递增区间有,递减区间有

此时,函数有3个极值点,且

∴当时,是函数的两个零点,  9分

即有,消去   

有零点,且

∴函数上递减,在上递增

要证明   

 即证

构造函数=0

只需要证明单调递减即可.而 上单调递增,

∴当时,. 14分

考点:本题主要考查应用导数研究函数的单调性及极值,不等式的证明。

点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。证明不等式问题,往往通过构造新函数,研究其单调性及最值,而达到目的。本题(II)难度较大。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)

已知函数,其中为常数,且

时,求 )上的值域;

对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,其中为常数.那么“”是“为奇函数”的(   )

(A)充分而不必要条件(B)必要而不充分条件

(C)充分必要条件   (D)既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽“江淮十校”协作体高三上学期第一次联考文数学卷(解析版) 题型:解答题

已知函数(其中为常数).

(I)当时,求函数的最值;

(Ⅱ)讨论函数的单调性.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川省高三上学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数(其中为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,设函数的3个极值点为,且.证明:.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市高三上学期期中考试数学卷 题型:解答题

(本题满分16分,第1小题5分,第2小题6分,第3小题5分)

    已知函数,其中为常数,且

   (1)若是奇函数,求的取值集合A;

   (2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B;

   (文)当时,求的反函数;

   (3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。

   (文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。

 

查看答案和解析>>

同步练习册答案