精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)求函数f(x)在区间[﹣ ]上的最小值和最大值.

【答案】解:( I)函数f(x)=2cosx(sinx+cosx)=2sinxcosx+2cos2x=sin2x+cos2x+1= sin(2x+ )+1,∴函数f(x)的最小正周期为:T= =π;

(Ⅱ) 由 ,解得 ,∴函数f(x)的单调递增区间为 (k∈Z);

( III)由 ,得 ,令2x+ =﹣ ,解得x=﹣ ,∴f(x)min= = ×(﹣ )+1=0,

令2x+ = ,解得x= ,∴f(x)max= = ×1+1= +1.


【解析】( I)根据正弦函数和余弦函数的二倍角化简成正弦型函数可得周期。(Ⅱ)把看成一个整体代入正弦函数的单调区间整理即得。(Ⅲ)由整体思想可得 ≤ 2 x + 根据正弦函数的单调性可得 ,最小值当整体取-时得到,最大值 当整体取时得到。
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(a>0,且a≠1)
(1)求函数f(x)的定义域和值域;
(2)若函数 f(x)有最小值为﹣2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCD中,△ABD,△BCD均为正三角形,且平面ABD⊥平面BCD,点O,M分别为棱BD,AC的中点,则异面直线AB与OM所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是 ,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是( )
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

参考公式:b= =
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为 ,…, 分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).

(1)求频率分布直方图中的 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);
(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;
(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.

查看答案和解析>>

同步练习册答案