精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线与直线)交于两点.

1)当时,分别求在点处的切线方程;

2轴上是否存在点,使得当变动时,总有?说明理由.

【答案】1;(2,理由见解析.

【解析】试题分析:(1)由题设可得,利用导数求斜率,即可写出切线方程;(2为符合题意的点,,直线的斜率分别为.将代入的方程整理得

,当时,有,则直线的倾斜角与直线的倾斜角互补.

试题解析:(1)由题设可得

,故处的导数值为处的切线方程为,即

处的导数值为处的切线方程为,即

故所求切线方程为

2)存在符合题意的点,证明如下:

为符合题意的点,,直线的斜率分别为

代入的方程整理得

时,有,则直线的倾斜角与直线的倾斜角互补,

,所以符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】棋盘上标有第012...100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n站的概率为,设.则下列结论正确的有(

②数列)是公比为的等比数列;

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,是实数.

)若处取得极值,的值;

)若在区间为增函数,的取值范围;

)在(Ⅱ)的条件下,函数有三个零点,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为为参数),射线的极坐标方程为

1)求圆和直线的极坐标方程;

(2)已知射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为,且,过作斜率为的直线交抛物线两点.

1)若,求

2)若为坐标原点,为定值,当变化时,始终有,求定值的大小;

3)若,当改变时,求三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近10年投入的年研发费用与年销售量的数据,得到散点图如图所示.

1)利用散点图判断(其中均为大于0的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由);

2)对数据作出如下处理,令,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求关于的回归方程;

15

15

28.25

56.5

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,动点两点连线的斜率满足.

(1)求动点的轨迹的方程;

(2)是曲线轴正半轴的交点,曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案