精英家教网 > 高中数学 > 题目详情
17.“4<k<10”是“方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦点在x轴上的椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据椭圆的定义以及集合的包含关系判断即可.

解答 解:∵方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦点在x轴上的椭圆,
∴$\left\{\begin{array}{l}{k-4>0}\\{10-k>0}\\{k-4>10-k}\end{array}\right.$,解得:7<k<10,
故“4<k<10”是“方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦点在x轴上的椭圆”的必要不充分条件,
故选:B.

点评 本题考查了椭圆的定义,考查充分必要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知甲、乙两组数据如茎叶图所示,它们的中位数相同,平均数也相同.
(1)求m,n的值;
(2)若从甲、乙两组数据中随机各抽取一个数据,求乙的数据大于甲的数据的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l经过点(1,3),且与圆x2+y2=1相切,直线l的方程为x=1或4x-3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从5件产品中任取2件,则不同取法的种数为10(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的公差d>0,前n项和为Sn,且满足a2•a3=45,a1+a4=14
(1)试寻找一个等差数列{bn}和一个非负常数p,使得等式(n+p)•bn=Sn对于任意的正整数n恒成立,并说明你的理由;
(2)对于(1)中的等差数列{bn}和非负常数p,试求f(n)=$\frac{{b}_{n}}{(n+p)•{b}_{n+1}}$(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,有一圆盘其中的阴影部分的圆心角为75°,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为$\frac{5}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的前n项和为Sn,a1<0,S9=S12,则当Sn取最小值时,n等于(  )
A.10B.11C.9或10D.10或11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z.
(1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0使得f(x0)<2(x02+1)成立,求c的值;
(3)对于问(1)中的f(x),若对任意的m∈[-4,1],恒有f(x)≥2x2-mx-14,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)在(0,2)上为减函数,则实数a的取值范围是(  )
A.(0,16]B.(-∞,16)C.(16,+∞)D.[16,+∞)

查看答案和解析>>

同步练习册答案