精英家教网 > 高中数学 > 题目详情

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

【答案】
(1)解:设该厂这个月共生产轿车n辆,

由题意得 =

∴n=2000,

∴z=2000﹣(100+300)﹣150﹣450﹣600=400.


(2)解:设所抽样本中有a辆舒适型轿车,

由题意,得a=2.

因此抽取的容量为5的样本中,

有2辆舒适型轿车,3辆标准型轿车.

用A1,A2表示2辆舒适型轿车,

用B1,B2,B3表示3辆标准轿车,

用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,

则基本事件空间包含的基本事件有:

(A1,A2),(A1B1),(A1B2),

(A1,B3,),(A2,B1),(A2,B2)(A2,B3),

(B1B2),(B1,B3,),(B2,B3),共10个,

事件E包含的基本事件有:

(A1A2),(A1,B1,),(A1,B2),(A1,B3),

(A2,B1),(A2,B2),(A2,B3),共7个,

故 P(E)=

即所求概率为


(3)解:样本平均数 = (9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.

设D表示事件“从样本中任取一数,

该数与样本平均数之差的绝对不超过0.5”,

则基本事件空间中有8个基本事件,

事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,

∴P(D)= ,即所求概率为


【解析】(1)根据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,得每个个体被抽到的概率,列出关系式,得到n的值(2)由题意知本题是一个古典概型,试验发生包含的事件数和满足条件的事件数,可以通过列举数出结果,根据古典概型的概率公式得到结果.(3)首先做出样本的平均数,做出试验发生包含的事件数,和满足条件的事件数,根据古典概型的概率公式得到结果.
【考点精析】利用分层抽样对题目进行判断即可得到答案,需要熟知先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),且x∈[﹣ ]
(1)求 及| + |;
(2)若f(x)= ﹣| + |,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有的点向右平行移动 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x﹣
D.y=sin( x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

  (1)若函数是单调函数,求的取值范围;

2)求证:当时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + ,则下列命题中正确命题的序号是
①f(x)是偶函数;
②f(x)的值域是[ ,2];
③当x∈[0, ]时,f(x)单调递增;
④当且仅当x=2kπ± (k∈Z)时,f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和是Sn , 且Sn+ an=1(n∈N+
(1)求数列{an}的通项公式;
(2)设bn= (1﹣Sn+1)(n∈N+),令Tn= ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且 ,点C为圆O上一点,且 .点P在圆O所在平面上的正投影为点D,PD=BD.

(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )
A.289
B.1024
C.1225
D.1378

查看答案和解析>>

同步练习册答案