精英家教网 > 高中数学 > 题目详情
20.定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是(  )
A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)

分析 构造函数g(x)=xf(x)求函数的导数,利用函数的单调性即可求不等式.

解答 解:设g(x)=xf(x),
则g′(x)=[xf(x)]′=xf′(x)+f(x)<0,
即函数g(x)=xf(x)单调递减,
显然g(2)>g(3),
则2f(2)>3f(3),
故选:D.

点评 本题主要考查函数单调性的应用,根据条件构造函数,求函数的导数,利用函数的单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知F1、F2是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,F1(-1,0),且椭圆M过点(1,$\frac{2\sqrt{3}}{3}$).
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)过F1、F2分别作直线l1与l2,l1交椭圆于B,D两点,l2交椭圆于A,C两点,且l1⊥l2,若四边形ABCD的面积为$\frac{96}{25}$,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为(  )
A.8B.9C.$\frac{47}{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果函数y=$\frac{1}{2}$sinωx在区间[-$\frac{π}{8}$,$\frac{π}{12}$]上单调递减,那么ω的取值范围为(  )
A.[-6,0)B.[-4,0)C.(0,4]D.(0,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如表:
分数区间45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成绩120分以上为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
优秀不优秀总计
甲班62430
乙班32730
总计95160
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值供参考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:a≥2;命题q:对任意实数x∈[-1,1],关于x的不等式x2-a≤0恒成立,若p且q是真命题,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于非零复数a,b,c,有以下七个命题:
①a+$\frac{1}{a}$≠0;
②若a=-$\overline{a}$,$\overline{a}$为a的共轭复数,则a为纯虚数;
③(a+b)2=a2+2ab+b2
④若a2=ab,则a=b;
⑤若|a|=|b|,则a=±b;
⑥若a2+b2+c2>0,则a2+b2>-c2
⑦若a2+b2>-c2,则a2+b2+c2>0.
其中,真命题的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)是定义在R上的奇函数,f(1)=0,$\frac{xf′(x)-f(x)}{{x}^{2}}$>0(x>0),则不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.

查看答案和解析>>

同步练习册答案