精英家教网 > 高中数学 > 题目详情
如图所示,在正三棱锥S-ABC中,M、N分别是SC、BC的中点,且MN⊥AM,若侧棱SA=2,则正三棱锥SABC外接球的表面积是________.
36π
在正三棱锥S-ABC中,易证SB⊥AC,又MN∥BS,∴MN⊥AC.∵MN⊥AM,
∴MN⊥平面ACM.∴MN⊥SC,∴∠CSB=∠CMN=90°,即侧面为直角三角形,底面边长为2.此棱锥的高为2,设外接球半径为R,则(2-R)2=R2,∴R=3,∴外接球的表面积是36π.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABEF中,,讲DCEF沿CD折起,使得,得到一个几何体,

(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某几何体的三视图如图所示,则该几何体的体积是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体的外接球与内切球的表面积的比值为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥SABC的体积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.

查看答案和解析>>

同步练习册答案