【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2 +cos2A= .
(1)求A的值;
(2)若a= ,求bc的最大值.
【答案】
(1)解:∵sin2 +cos2A= .
+cos2A= ,
8cos2A+2cosA﹣3=0,
∴解得:cosA= 或﹣ (A为锐角,舍去).
∴A= .
(2)解:∵A= ,a= ,
∴由余弦定理可得:3=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时等号成立,
∴bc的最大值为:3
【解析】(1)利用三角函数恒等变换的应用化简已知等式可得8cos2A+2cosA﹣3=0,从而解得cosA= ,由A为锐角,即可求得A的值.(2)利用余弦定理及基本不等式即可得:3=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时等号成立,从而得解.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.
科目:高中数学 来源: 题型:
【题目】设集合S={x|x>1},T={x||x﹣1|≤2},则(RS)∪T( )
A.(﹣∞,3]
B.[﹣1,1]
C.[﹣1,3]
D.[﹣1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}中a1=3,其前n项和Sn满足Sn=pan+1﹣ (p为非零实数)
(1)求p值及数列{an}的通项公式;
(2)设{bn}是公差为3的等差数列,b1=1.现将数列{an}中的ab1 , ab2 , …abn…抽去,余下项按原有顺序组成一新数列{cn},试求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是椭圆 在第一象限上的动点,过点P引圆x2+y2=4的两条切线PA、PB,切点分别是A、B,直线AB与x轴、y轴分别交于点M、N,则△OMN面积的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex[x2+(a+1)x+2a﹣1].
(1)当a=﹣1时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围;
(3)若曲线y=f(x)存在两条互相垂直的切线,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),则a+2b的取值范围为( )
A.
B.
C.(6,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
(1)在等差数列{an}中,a6=10,S5=5,求该数列的第8项a8;
(2)在等比数列{bn}中,b1+b3=10,b4+b6= ,求该数列的前5项和S5 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com