【题目】已知函数f(x)=x2﹣2ax+2b
(1)若a,b都是从0,1,2,3四个数中任意取的一个数,求函数f(x)有零点的概率;
(2)若a,b都是从区间[0,3]中任取的一个数,求f(1)<0成立时的概率.
【答案】
(1)解:由题意知本题是一个古典概型,
试验发生包含的事件a,b都从0,1,2,3四个数中任取的一个数的
基本事件总数为N=4×4=16个,
函数有零点的条件为△,4a2﹣8b≥0,即a2≥2
∵事件“a2≥2b”包含:(0,0),(2,0)
(2,1),(2,2)(3,0),(3,1),(3,2),(3,3)共有7个
∴事件“a2≥2b”的概率为p=
(2)解:f(1)=1﹣2a+2b<0,∴a﹣b>
则a,b都是从区间[0,3]任取的一个数,有f(1)<0,
即满足条件:
转化为几何概率如图所示,阴影部分面积为
∴事件“f(1)<0”的概率为p= .
【解析】(1)本题是一个古典概型,试验发生包含的事件a,b都从0,1,2,3四个数中任取的一个数的基本事件总数为5×5个,函数有零点的条件为△=a2﹣4b≥0,即a2≥4b,列举出所有事件的结果数,得到概率.(2)由题意知本题是一个几何概型,试验发生包含的事件可以写出a,b满足的条件,满足条件的事件也可以写出,画出图形,做出两个事件对应的图形的面积,得到比值
【考点精析】利用几何概型和二次函数的性质对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且, 是侧棱上的动点.
(1)求四棱锥的表面积;
(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为8,圆环的圆心距离地面的高度为10,蚂蚁每12分钟爬行一圈,若蚂蚁的起始位置在最低点处.
(1)试确定在时刻()时蚂蚁距离地面的高度;
(2)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过14?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(甲),在直角梯形中, , , ,且, , 、、分别为、、的中点,现将沿折起,使平面平面,如图(乙).
(1)求证:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,4],f(4x)≤g(x),求实数a的取值范围;
(3)设a>﹣2,求函数h(x)=g(x)﹣f(x),x∈[1,2]的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且, 是侧棱上的动点.
(1)求四棱锥的表面积;
(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形, 底面,该四棱锥的正视图和侧视图均为腰长为6的等腰直角三角形.
(1)画出相应的俯视图,并求出该俯视图的面积;
(2)求证: ;
(3)求四棱锥外接球的直径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com