精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C的对边分别为a,b,c,bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(1)求证:a,c,b成等差数列;
(2)若C=$\frac{π}{3}$,△ABC的面积为2$\sqrt{3}$,求c.

分析 (1)利用正弦定理、二倍角公式、诱导公式,证得sinB+sinA=2sinC,可得a,c,b成等差数列.
(2)根据C=$\frac{π}{3}$,△ABC的面积为2$\sqrt{3}$,求得ab的值,再利用余弦定理求得c的值.

解答 解:(Ⅰ)证明:△ABC中,∵bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3c}{2}$c,由正弦定理得:
sinBcos2$\frac{A}{2}$+sinAcos2$\frac{B}{2}$=$\frac{3}{2}$sinC,
即sinB•$\frac{1+cosA}{2}$+sinA•$\frac{1+cosB}{2}$=$\frac{3}{2}$sinC,
∴sinB+sinA+sinBcosA+cosBsinA=3sinC,
∴sinB+sinA+sin(A+B)=3sinC,
∴sinB+sinA+sinC=3sinC,∴sinB+sinA=2sinC∴a+b=2c,
∴a,c,b成等差数列.
(Ⅱ)∵C=$\frac{π}{3}$,△ABC的面积为S=$\frac{1}{2}$ab•sinC=2$\sqrt{3}$,∴ab=8,
又c2=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab=4c2-24,
∴c2=8,可得c=2$\sqrt{2}$.

点评 本题主要考查正弦定理、余弦定理的应用,诱导公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)在一个周期内图象如图所示.
(1)试确定A,ω,φ的值.
(2)求y=$\sqrt{3}$与函数f(x)的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM,交y轴于点P,切圆于点M,若$2\overrightarrow{OM}=\overrightarrow{OF}+\overrightarrow{OP}$,则双曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:“?x0∈R,x03>x0”,则命题¬p为(  )
A.?x∈R,x3>xB.?x∈R,x3<xC.?x∈R,x3≤xD.?x0∈R,x03≤x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,设水池底面一边的长度为xm
(1)若水池的总造价为W元,用含x的式子表示W.
(2)怎样设计水池能使总造价最低,最低总造价W是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知,△ABC中,A(1,1),B(2,-3),C(3,5),写出满足下列条件的直线方程(要求最终结果都用直线的一般式方程表示,其他形式的结果不得分.)
(1)求直线AB方程;
(2)BC边中点D,求中线AD方程;
(3)BC边上的高线的方程;
(4)BC边的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,是一个空间几何体的三视图,且这个空间几何体的所有顶点都在同一个球面上,则这个球的体积是(  )
A.$\frac{49}{9}π$B.$\frac{{28\sqrt{21}}}{27}π$C.$\frac{28}{3}π$D.$\frac{{28\sqrt{7}}}{9}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$y=tan(2x-\frac{π}{3})$的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;
(2)求证:f(x)是奇函数;
(3)若不等式f(x)-a>0在区间(1,∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案