精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线xy轴分别交于点,记以点为圆心,半径为r的圆与三角形的边的交点个数为M.对于下列说法:①当时,若,则;②当时,若,则;③当时,M不可能等于3;④M的值可以为012345.其中正确的个数为(

A.1B.2C.3D.4

【答案】B

【解析】

作出直线,可得,分别考虑圆心和半径的变化,结合图形,即可得到所求结论.

作出直线,可得

①当时,若,当圆与直线相切,可得

当圆经过点,即

,故①错误;

②当时,若,圆,当圆经过O时,,交点个数为2

时,交点个数为1,则,故②正确;

③当时,圆,随着的变化可得交点个数为120

不可能等于3,故③正确;

的值可以为01234,不可以为5,故④错误.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD是梯形,AB//CDDAABBCSC,SA=AD=3,AB=6,点E在棱SD上,且VS-ACE=2VE-ACD

(1)求证:BC⊥平面SAC

(2)求二面角S-AE-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为右支上的一点,轴交于点的内切圆在边上的切点为.若,则的离心率是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

1)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:

超过m

不超过m

总计

第一种生产方式

第二种生产方式

总计

2)根据(1)中的列联表,能否有的把握认为两种生产方式的效率有差异?

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是使得解析式有意义的x集合,如果对于定义域内的任意实数x,函数值均为正,则称此函数为“正函数”.

1)证明函数是“正函数”;

2)如果函数不是“正函数”,求正数a的取值范围.

3)如果函数是“正函数”,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化城市环境,相关部门需对一半圆形中心广场进行改造出新,为保障市民安全,施工队对广场进行围挡施工如图,围挡经过直径的两端点A,B及圆周上两点C,D围成一个多边形ABPQR,其中AR,RQ,QP,PB分别与半圆相切于点A,D,C,B.已知该半圆半径OA30米,∠COD60°,设∠BOC

(1)求围挡内部四边形OCQD的面积;

(2)为减少对市民出行的影响,围挡部分面积要尽可能小求该围挡内部多边形ABPQR面积的最小值?并写出此时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名马拉松比赛志愿者,其中志愿者通晓日语,通晓俄语,通晓英语,从中选出通晓日语、俄语和英语的志愿者各1名,组成一个小组.

列出基本事件;

被选中的概率;

不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=1-a0a≠1)是定义在(-∞+∞)上的奇函数.

1)求a的值;

2)证明:函数fx)在定义域(-∞+∞)内是增函数;

3)当x∈(01]时,tfx≥2x-2恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案