精英家教网 > 高中数学 > 题目详情

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

【答案】(1)3x﹣y﹣5=0; (2)x+2y﹣4=0或x+y﹣3=0.

【解析】

(1)联立方程组,求得交点的坐标P,根据与直线垂直,求解所求直线的斜率,利用点斜式方程,即可求解;

(2)由(1)知直线l过P(2,1),分类讨论,利用点到直线的距离公式,列出方程即可求解求解,即可求解直线的方程.

(1)由 ,解得P(2,1),

由于l与x+3y﹣1=0垂直,

则l的斜率为3,代入直线的点斜式方程得:y﹣1=3(x﹣2),

即3x﹣y﹣5=0;

(2)由(1)知直线l过P(2,1),

若直线l的斜率不存在,即x=2,此时,A,B的直线l的距离不相等,

故直线l的斜率一定存在,

设直线l的方程为:y=k(x﹣2)+1,即kx﹣y﹣2k+1=0,

由题意得,解得:k=﹣1或k=﹣

故所求直线方程是:x+2y﹣4=0或x+y﹣3=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求适合下列条件的圆锥曲线的标准方程:

(1)抛物线的焦点是椭圆的上顶点;

(2)椭圆的焦距是8,离心率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(cosθ,sinθ), =(﹣ );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是(  )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线C的右焦点为(2,0),实轴长为.

(1)求双曲线C的方程;

(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若两直线的倾斜角分别为 ,则下列四个命题中正确的是( )

A. <,则两直线的斜率:k1 < k2 B. =,则两直线的斜率:k1= k2

C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.

(1)求a和b的值;

(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以30海里/小时的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40分钟后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶80分钟到达C点,求P、C间的距离( )海里.
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案