精英家教网 > 高中数学 > 题目详情

【题目】某单位需要从甲、乙人中选拔一人参加新岗位培训,特别组织了个专项的考试,成绩统计如下:

第一项

第二项

第三项

第四项

第五项

甲的成绩

乙的成绩

(1)根据有关统计知识,回答问题:若从甲、乙人中选出人参加新岗培训,你认为选谁合适,请说明理由;

(2)根据有关槪率知识,解答以下问题:

从甲、乙人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.

【答案】(1) 派甲适合;(2)

【解析】试题分析:(1)计算两者成绩的平均数和方差,平均数相等,故选择方差较小的比较稳定.(2)利用列举法列出所有的可能性有种,其中符合题意的有种,由此求得概率为.

试题解析:

(1)甲的平均成绩为,乙的平均成绩为,故甲乙二人的平均水平一样. 甲的成绩方差,乙的成绩方差 ,故应派甲适合.

(2)从甲乙二人的成绩中各随机抽一个,设甲抽到的成绩为,乙抽到的成绩为 ,则所有的 个,其中满足条件 的有, 共有 个,所求事件的概率为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列满足 .

(1)证明:数列是等差数列;

(2)设,数列的前项和为,对任意的 恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,

,平面底面的中点,为正三角形,是棱上的一点(异于端点).

)若中点,求证:平面

)是否存在点,使二面角的大小为30°.若存在,求出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年利润(单位:万元)的影响,对近5年的宣传费和年利润)进行了统计,列出了下表:

(单位:千元)

2

4

7

17

30

(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.

(1)小王准备用线性回归模型拟合的关系请你帮助建立关于的线性回归方程;(系数精确到0.01)

(2)小李决定选择对数回归模型拟合的关系得到了回归方程并提供了相关指数.请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润.(精确到0.01)(小王也提供了他的分析分析数据

参考公式:相关指数

回归方程中斜率和截距的最小二乘估计公式分别为

参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;

(2)在选取的样本中,从竞赛成绩在分以上(含)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当a=﹣2时,求函数f(x)的单调区间;

)若g(x)= +1+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中底面ABCD是正方形侧棱PD垂直于底面ABCDPDDC,点E是PC的中点

(Ⅰ)求证:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在点处的切线方程;

(2)求函数的单调区间;

(3)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

I)求证:恒成立;

II)若存在实数,使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案