精英家教网 > 高中数学 > 题目详情

【题目】某气象站观测点记录的连续4天里, 指数与当天的空气水平可见度(单位)的情况如下表1:

哈尔滨市某月指数频数分布如下表2

(1)设,根据表1的数据,求出关于的回归方程;

(参考公式: ,其中

(2)小张开了一家洗车店,经统计,当不高于200时,洗车店平均每天亏损约2000元;当时,洗车店平均每天收入约4000元;当大于400时,洗车店平均每天收入约7000元;根据表2估计校长的洗车店该月份平均每天的收入.

【答案】(1);(2).

【解析】试题分析:

(1)利用回归方程的计算公式可得回归方程为.

(2)利用(1)的结论结合题意可预测校长的洗车店该月份平均每天的收入为5500.

试题解析:

(1)

关于的回归方程是.

(2)表2知:30天中有3天每天亏损约2000元,有6天每天收入约4000元,有21天每天收入约7000元,故该月份平均每天的收入约为(元);答:洗衣店该月份平均每天的收入约为5500元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是(
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的最小正周期为π,若其图象向左平移 个单位后得到的函数为奇函数,则函数f(x)的图象(
A.关于点 对称
B.关于点 对称
C.关于直线 对称
D.关于直线 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入的部分数据如表:

x

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

﹣2


(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且.

(1)当时,证明:平面平面

(2)当时,求平面与平面所成的二面角的正弦值及四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)
(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如表:

1

2

3

4

12

28

42

56

(Ⅰ)在图中画出表中数据的散点图;

(Ⅱ)根据(Ⅰ)中的散点图拟合的回归模型,并用相关系数甲乙说明;

(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.

附注:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

同步练习册答案