【题目】已知数列满足: ,且.
(1)求证:数列是等比数列;
(2)设是数列的前项和,若对任意都成立.试求的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】
试题
(1)利用题中的递推关系计算可得后项与前项的比值为定值,计算首项为即可证得数列为等比数列;
(2)原问题转化为对任意的都成立,分类讨论可得:实数的取值范围是.
试题解析:
(Ⅰ)因为,,,
所以,
所以,
又,
所以数列是首项为,公比为的等比数列.
(Ⅱ)由(Ⅰ)得,,即,
则
.
又 ,
要使对任意的都成立,
即(*)对任意的都成立.
①当为正奇数时,由(*)得,,
即,
因为,
所以对任意的正奇数都成立,
当且仅当时,有最小值1,
所以.
②当为正偶数时,由(*)得,
,
即,
因为,
所以对任意的正偶数都成立.
当且仅当时,有最小值,所以.
综上所述,存在实数,使得对任意的都成立,
故实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】环保组织随机抽检市内某河流2015年内100天的水质,检测单位体积河水中重金属含量,并根据抽检数据绘制了如下图所示的频率分布直方图.
(Ⅰ)求图中的值;
(Ⅱ)假设某企业每天由重金属污染造成的经济损失(单位:元)与单位体积河水中重金属含量
的关系式为,若将频率视为概率,在本年内随机抽取一天,试估计这天经济损失不超过500元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了位育龄妇女,结果如表.
非一线 | 一线 | 总计 | |
愿生 | |||
不愿生 | |||
总计 |
附表:
> | |||
由算得,参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”
B. 有以上的把握认为“生育意愿与城市级别有关”
C. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”
D. 有以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线和曲线交于,两点(在、之间),且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线.
(1)若直线不经过第四象限,求的取值范围;
(2)若直线交轴负半轴于点,交轴正半轴于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.
(1)请解释的实际意义,并求的表达式;
(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).
(1)若圆C1与圆C2相交于A,B两点,且|AB|=,求点C1到直线AB的距离;
(2)若圆C1与圆C2相内切,求圆C2的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com