精英家教网 > 高中数学 > 题目详情
8.已知递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项.
( I)求数列{an}的通项公式an
(Ⅱ)令${b_n}={a_n}•{log_{\frac{1}{2}}}{a_n}$,Sn=b1+b2+…bn,求Sn

分析 (I)利用等差数列与等比数列的通项公式及其性质解出即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(Ⅰ)设数列{an}的公比为q,由题意可知:$\left\{\begin{array}{l}{a_2}+{a_3}+{a_4}=28\\ 2({a_3}+2)={a_2}+{a_4}\end{array}\right.$,…(1分)
即$\left\{\begin{array}{l}{a_3}=8\\{a_2}+{a_4}=20\end{array}\right.$,$\left\{\begin{array}{l}{a_1}{q^2}=8\\{a_1}q+{a_1}{q^3}=20\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=2\\ q=2\end{array}\right.$或$\left\{\begin{array}{l}{a_1}=32\\ q=\frac{1}{2}\end{array}\right.$(舍)…(4分)
∴${a_n}=2•{2^{n-1}}={2^n}$.…(5分)
(Ⅱ)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}={2^n}{log_{\frac{1}{2}}}{2^n}=-n•{2^n}$,…(6分)
∴${S_n}=-1×2-2×{2^2}-3×{2^3}-…-n×{2^n}(1)$
$2{S_n}=-1×{2^2}-2×{2^3}-3×{2^4}-…-n×{2^{n+1}}(2)$…(8分)
∴$(1)-(2),-{S_n}=-(2+{2^2}+{2^3}+…{2^n})+n×{2^{n+1}}$=$-\frac{{2-{2^{n+1}}}}{1-2}+n×{2^{n+1}}=(n-1)×{2^{n+1}}+2$…(11分)
∴${S_n}=(1-n)×{2^{n+1}}-2$.…(12分)

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\\{x≥0,y≥0}\end{array}\right.$,则z=2x+y的最大值为(  )
A.0B.$\frac{5}{3}$C.4D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设D为不等式组$\left\{\begin{array}{l}x+y≥0\\ x-y≤0\\ x+3y≤3\end{array}\right.$表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是$\frac{9}{4}$,$\frac{x-y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[-$\sqrt{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的各项均为正数,且log3a1+log3a2+log3a3+…+log3a10=10,则a5a6的值为(  )
A.3B.6C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知不等式x2-ax+a-2>0的解集为(-∞,x1)∪(x2,+∞),其中x1<0<x2,则${x_1}+{x_2}+\frac{2}{x_1}+\frac{2}{x_2}$的最大值为(  )
A.$\frac{3}{2}$B.0C.2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,已知矩形ABCD中,AB=3,BC=a,若PA⊥平面AC,在满足条件PE⊥DE的E点有两个时,a的取值范围是a>6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=log2(3-2x)的定义域是(  )
A.(-∞,$\frac{3}{2}$)B.(0,$\frac{3}{2}$)C.(0,1)∪(1,$\frac{3}{2}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O的方程为x2+y2=5.
(1)P是直线y=$\frac{1}{2}$x-5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N.
(Ⅰ)求点N的轨迹C的方程;
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),是否存在一个定点T,使得T,A′,B三点共线?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案