分析 (I)利用等差数列与等比数列的通项公式及其性质解出即可得出.
(2)利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(Ⅰ)设数列{an}的公比为q,由题意可知:$\left\{\begin{array}{l}{a_2}+{a_3}+{a_4}=28\\ 2({a_3}+2)={a_2}+{a_4}\end{array}\right.$,…(1分)
即$\left\{\begin{array}{l}{a_3}=8\\{a_2}+{a_4}=20\end{array}\right.$,$\left\{\begin{array}{l}{a_1}{q^2}=8\\{a_1}q+{a_1}{q^3}=20\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=2\\ q=2\end{array}\right.$或$\left\{\begin{array}{l}{a_1}=32\\ q=\frac{1}{2}\end{array}\right.$(舍)…(4分)
∴${a_n}=2•{2^{n-1}}={2^n}$.…(5分)
(Ⅱ)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}={2^n}{log_{\frac{1}{2}}}{2^n}=-n•{2^n}$,…(6分)
∴${S_n}=-1×2-2×{2^2}-3×{2^3}-…-n×{2^n}(1)$
$2{S_n}=-1×{2^2}-2×{2^3}-3×{2^4}-…-n×{2^{n+1}}(2)$…(8分)
∴$(1)-(2),-{S_n}=-(2+{2^2}+{2^3}+…{2^n})+n×{2^{n+1}}$=$-\frac{{2-{2^{n+1}}}}{1-2}+n×{2^{n+1}}=(n-1)×{2^{n+1}}+2$…(11分)
∴${S_n}=(1-n)×{2^{n+1}}-2$.…(12分)
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{5}{3}$ | C. | 4 | D. | -10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 6 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 0 | C. | 2 | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,$\frac{3}{2}$) | B. | (0,$\frac{3}{2}$) | C. | (0,1)∪(1,$\frac{3}{2}$) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com