【题目】设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足
(1) 求点P的轨迹方程;
(2)设点 在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.
科目:高中数学 来源: 题型:
【题目】设函数
(1)讨论函数的单调性;
(2)若有两个极值点,记过点的直线的斜率为,问:是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(1)若直线与曲线交于两点,求的值;
(2)设曲线的内接矩形的周长为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log4a)+f(lo a)≤2f(1),则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn , 则S = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列an的首项a1=2,且an=2an﹣1﹣1(nN+ , n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan﹣n}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为( )
A.0.25
B.0.2
C.0.35
D.0.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一颗质地均匀的骰子先后抛掷2次,观察其向上的点数,分别记为x,y.
(1)若记“x+y=8”为事件A,求事件A发生的概率;
(2)若记“x2+y2≤12”为事件B,求事件B发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com