【题目】[选修4-4 , 坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l的参数方程为 (t为参数).(10分)
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为 ,求a.
【答案】
(1)
解:曲线C的参数方程为 (θ为参数),化为标准方程是: +y2=1;
a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;
联立方程 ,
解得 或 ,
所以椭圆C和直线l的交点为(3,0)和(﹣ , ).
(2)
l的参数方程 (t为参数)化为一般方程是:x+4y﹣a﹣4=0,
椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),
所以点P到直线l的距离d为:
d= = ,φ满足tanφ= ,
又d的最大值dmax= ,
所以|5sin(θ+φ)﹣a﹣4|的最大值为17,
得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,
即a=﹣16或a=8.
【解析】(1.)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;
(2.)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为 进行分析,可以求出a的值.
科目:高中数学 来源: 题型:
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立与之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).
附参考公式:回归方程中中和最小二乘估计分别为
,相关系数
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线过点,且,线段交圆的交点为点,是关于轴的对称点.
(1)求直线的方程;
(2)已知是圆上不同的两点,且,试证明直线的斜率为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;
(Ⅱ)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
()求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);
2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, = .
(1)求证:DE⊥平面PAC;
(2)若直线PE与平面PAC所成角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com