精英家教网 > 高中数学 > 题目详情
已知平面区域如图所示,z=mx+y(m>0)在平面区域内取得最大值的最优解有无数多个,则m=______.
由题意,z=mx+y(m>0)在平面区域内取得最大值的最优解有无数多个,
最优解应在线段AC上取到,故mx+y=0应与直线AC平行
∵kAC=
22
5
-3
1-5
=-
7
20

∴-m=-
7
20

∴m=
7
20

故答案为:
7
20
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设x、y满足
x+2y-1≥0
x-y+2≥0
2x+y-5≤0
则z=x+y的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设x,y满足约束条件
1≤x≤3
-1≤x-y≤0
,则z=2x-y的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x,y满足约束条件
x-y+5≥0
x+y≥0
x≤3
,求z=2x+4y的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设实数x,y满足不等式组
1≤x+y≤4
y+2≥|2x-3|

(1)作出点(x,y)所在的平面区域并求出x2+y2的取值范围;
(2)设m>-1,在(1)所求的区域内,求Q=y-mx的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知z=2x-y,式中变量x,y满足约束条件
y≤x
x+y≥1
x≤2
,则z的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设实数x,y满足约束条件
2x-y+2≥0
x+y-4≤0
x≥0,y≥0
,目标函数z=x-y的最小值为(  )
A.-
8
3
B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不等式3x+y≤15表示的平面区域是图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x、y满足条件
x≥0
y≤x
2x+y-9≤0
时,目标函数z=x+3y的最大值为______.

查看答案和解析>>

同步练习册答案