精英家教网 > 高中数学 > 题目详情
在△ABC中,a=3,c=3
3
,A=30°,求C及b.
考点:解三角形
专题:解三角形
分析:根据正弦定理先求出角C,然后结合角C,利用三角形的边角关系即可得到结论.
解答: 解:∵a=3,c=3
3
,A=30°,
∴由正弦定理得
a
sinA
=
c
sinC

即sinC=
csinA
A
=
3
3
×
1
2
3
=
3
2

则C=60°或120°,
则B=180°-30°-60°=90°或则B=180°-30°-120°=30°,
若B=90°,则b=
a2+c2
=
9+27
=
36
=6

若B=30°,则b=a=3.
点评:本题主要考查三角形正弦定理和余弦定理的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
学院机械工程学院海洋学院医学院经济学院
人数4646
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

任取实数a,b∈[-1,1],则a,b满足b≥a2的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(-1,3),
b
=(1,t),若(
a
-2
b
)⊥
a
,则|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(2x+
π
6
),x∈R.
(1)求f(
π
12
)的值;
(2)若sinθ=
4
5
,θ∈(0,
π
2
),求f(
12
-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在渐近线方程为4x±3y=0的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上,其中F1,F2分别为其左、右焦点.若△PF1F2的面积为16且
PF1
PF2
=0,则a+b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x+2x-3的零点所在的大致区间是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,三角形的面积为
3
,又
cosC
cosB
=
c
2a-b
,则
1
b+1
+
9
a+9
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3,x≤0
log
1
3
x,x>0
,则方程f(x)=-1解的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案