精英家教网 > 高中数学 > 题目详情

已知函数,设
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值;
(3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。

(1)增区间减区间(2)(3)

解析试题分析:(1)


 
(2)
  当
  
(3)若的图象与
的图象恰有四个不同交点,
有四个不同的根,亦即
有四个不同的根。


变化时的变化情况如下表:



(-1,0)
(0,1)
(1,)
的符号
+
-
+
-
的单调性




由表格知:
画出草图和验证可知,当时,


 
考点:函数单调性最值
点评:第二问第三问中的不等式恒成立或方程的根的问题都可通常转化为函数最值问题,这两种转化是常考知识点,须加以重视

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的定义域为,且满足对于定义域内任意的都有等式.
(1)求的值;
(2)判断的奇偶性并证明;
(3)若,且上是增函数,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,函数的图象与轴相交于点,且该函数的最小正周期为

(1)、求的值;
(2)、已知点,点是该函数图象上一点,
的中点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于区间上有意义的两个函数如果有任意,均有则称上是接近的,否则称上是非接近的.现有两个函数给定区间, 讨论在给定区间上是否是接近的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求,并求数列的通项公式.   
(2)已知函数上为减函数,设数列的前的和为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当a=1时,求它的单调区间;
(2)当时,讨论它的单调性;
(3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.
(1)求函数f(x)的解析式;
(2)设,解关于x的不等式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时函数取得一个极值,其中
(Ⅰ)求的关系式;
(Ⅱ)求的单调区间;
(Ⅲ)当时,函数的图象上任意一点的切线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f (x)的定义域为M,具有性质P:对任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意xM,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤cd(1)及无穷多个正整数n,满足d(n)=c.

查看答案和解析>>

同步练习册答案