精英家教网 > 高中数学 > 题目详情
(x2+x+1)n=
D0n
x2n+
D1n
x2n-1+
D2n
x2n-2+…+
D2n-1n
x+
D2nn
的展开式中,把
D0n
D1n
D2n
,…,
D2nn
叫做三项式的n次系数列.
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N),用三项式的n次系数表示
D0n+1
D1n+1
Dk+1n+1
(1≤k≤2n-1);
(3)用二项式系数表示
D3n
(1)在x2+x+1 )n=
D0n
x2 n+
D1n
x2 n-1+
D2n
x2 n-2+…+
D2 n-1n
x+
D2 nn
的展开式中,
∵(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,
D02
=1 , 
D12
=2 , 
D22
=3 , 
D32
=2 , 
D42
=1

∵(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,
D03
=1 , 
D13
=3 , 
D23
=6 , 
D33
=7 , 
D43
=6 , 
D53
=3 , 
D63
=1

(2)列出杨辉三角形类似的表(0≤n≤4,n∈N):
    1    
   111   
  12321  
 1367631 
14101619161041
D0n+1
=
D0n
=0 , 
D1n+1
=
D1n
+
D0n
=n+1 , 
Dk+1n+1
=
Dk-1n
+
Dkn
+
Dk+1n
 ( 1≤k≤2 n-1 )

(3)用二项式系数表示
D3n

D21
=1 , 
D22
=
D01
+
D11
+
D21
=3=
C23
 , 
D23
=
D02
+
D12
+
D22
=6=
C24

D24
=
D03
+
D13
+
D23
=10=
C25
 , …

可得
D2n-1
=
D0n-2
+
D1n-2
+
D2n-2
=1+n-2+
C2n-1
=
C2n

D3n
=
D1n-1
+
D2n-1
+
D3n-1

D3n
-
D3n-1
=
D1n-1
+
D2n-1
=
C1n
+
C2n
-1
=
C2n+1
-1

D33
-
D32
=
C24
-1
D34
-
D33
=
C25
-1
D35
-
D34
=
C26
-1
… , 
D3n
-
D3n-1
=
C2n+1
-1

D3n
-
D32
=
C24
+
C25
+
C26
+…+
C2n+1
-( n-2 )

=
C35
-
C34
 )+( 
C36
-
C35
 )+( 
C37
-
C36
 )+…+( 
C3n+2
-
C3n+1
 )-( n-2 )
=
C3n+2
-
C34
-( n-2 )

=
C3n+2
-( n+2 )

D3n
=
C3n+2
-
C1n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列选项中正确的是(  )
A、命题p:?x0∈R,tanx0=1;命题q:?x∈R,x2-x+1>0,则命题“p∧?q”是真命题B、集合M={x|x2<4},N={x|x2-2x-3<0},则M∩N={x|-2<x<3}C、命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”D、函数f(x)=x2+2(m-2)x+4在[1,+∞)上为增函数,则m的取值范围是m<1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c满足f(1)=0.
(I)若a>b>c,证明f(x)的图象与x轴有两个交点,且这两个交点间的距离d满足:
3
2
<d<3;
(Ⅱ)设f(x)在x=
t+1
2
(t>0,t≠1)处取得最小值,且对任意实数x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若数列{cn}的前n项和为bn,求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2+x+1)n=
D
0
n
x2n+
D
1
n
x2n-1+
D
2
n
x2n-2+…+
D
2n-1
n
x+
D
2n
n
的展开式中,把
D
0
n
D
1
n
D
2
n
,…,
D
2n
n
叫做三项式的n次系数列.
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N),用三项式的n次系数表示
D
0
n+1
D
1
n+1
D
k+1
n+1
(1≤k≤2n-1);
(3)用二项式系数表示
D
3
n

查看答案和解析>>

同步练习册答案