精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为
5
3
,而直线AB恰好经过抛物线x2=2p(y-q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则|
PF
QF
|=(  )
A.9B.4C.
173
2
D.
21
2
设kAB=
t-n
n-m
,kAC=
m-n
t-m

t-n
n-m
+
m-n
t-m
=
5
3

∵(n-m)•kAB=t-n=(t-m)+(m-n),
m-n
t-m
=-
1
kAB+1

∴kAB-
1
kAB+1
=
5
3
,解得kAB=-
4
3
或2(舍去),
∵直线AB过抛物线x2=2p(y-q)的焦点,和直线AB过抛物线x2=2py的焦点,对|
PF
QF
|的值没有影响,故可研究AB过抛物线x2=2py的情况,
∴直线AB的方程为y=-
4
3
x+
p
2
,与抛物线联立消去y,
整理得x2+
8p
3
x-p2=0,求得x=-
9p
3
p
3

∵抛物线x2=2py的焦点为(0,
p
2
),设P(x1,y1),Q(x2,y2),P在y轴左侧,
∴x1=-
9p
3
,x2=
p
3

∴|PF|=
1+k2
(|x1-0|)=
1+k2
|x1|,|QF|=
1+k2
(|x1-0|)=
1+k2
x2
∴|
PF
QF
|=|
1+k2
x1
1+k2x2
|=|
x1
x2
|=|
-
9
3
p
p
3
|=9.
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

曲线C是平面内与定点F(2,0)和定直线x=-2的距离的积等于4的点的轨迹.给出下列四个结论:
①曲线C过坐标原点;
②曲线C关于x轴对称;
③曲线C与y轴有3个交点;
④若点M在曲线C上,则|MF|的最小值为2(
2
-1)

其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的准线也是双曲线
x2
a2
-
4y2
3
=1
的一条准线,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等边三角形的一个顶点在坐标原点,另外两个顶点在抛物线y2=2x上,则该三角形的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足
ON
=
3
4
OM
,O为坐标原点.则抛物线C的方程______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面升高1米后,拱桥内水面宽度是多少米?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.
(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?
(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞.试问:一艘顶部宽4
2
m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=x上两点A(x1,y1)、B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案