科目:高中数学 来源:江西省九江市修水一中2011-2012学年高一第一次段考数学试题(人教版) 题型:022
对于函数y=f(x),定义域为D=[-2,2].
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若对于x∈[-2,2],都有f(-x)+f(x)=0,则y=f(x)是D上的奇函数;
③若函数y=f(x)在D上具有单调性且f(0)>f(1)则y=f(x)是D上的递减函数;
④若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数.
以上命题正确的是________(写出所有正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
对于函数y=f(x),x∈R,“y=|f(x)|的图像关于y轴对称”是“y=f(x)是奇函数”的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源:2013-2014学年湖南省名校高三上学期第一次大联考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;
(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源:2014届江西省高三年级联考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源:2012年人教A版高中数学必修1函数的概念练习卷(解析版) 题型:选择题
对于函数y=f(x),以下说法正确的有…( )
①y是x的函数
②对于不同的x,y的值也不同
③f(a)表示当x=a时函数f(x)的值,是一个常量
④f(x)一定可以用一个具体的式子表示出来
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com