精英家教网 > 高中数学 > 题目详情

【题目】如图,某城市有一条公路正西方AO通过市中心O后转向北偏东α角方向的OB,位于该市的某大学M与市中心O的距离OM=3 km,且∠AOM=β,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,且经过大学M,其中tanα=2,cosβ= ,AO=15km.

(1)求大学M在站A的距离AM;
(2)求铁路AB段的长AB.

【答案】
(1)解:在△AOM中,A0=15,∠AOM=β,且cosβ= ,OM=3

由余弦定理可得:AM2=OA2+OM2﹣2OAOMcos∠AOM=(3 2+152﹣2× ×15× =72.

所以可得:AM=6 ,大学M在站A的距离AM为6 km


(2)解:∵cos ,且β为锐角,∴sinβ=

在△AOM中,由正弦定理可得: = ,即 = ,∴sin∠MAO=

∴∠MAO= ,∴∠ABO=α﹣

∵tanα=2,∴sin ,cosα=

∴sin∠ABO=sin( )=

又∵∠AOB=π﹣α,∴sin∠AOB=sin(π﹣α)=

在△AOB中,AO=15,由正弦定理可得: = ,即 ,∴解得AB=30 ,即铁路AB段的长AB为30 km


【解析】(1)在△AOM中,利用已知及余弦定理即可解得AM的值;(2)由cos ,且β为锐角,可求sinβ,由正弦定理可得sin∠MAO,结合tanα=2,可求sinα,cosα,sin∠ABO,sin∠AOB,结合AO=15,由正弦定理即可解得AB的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c(a,b,c∈R且a≠0),若对任意实数x,不等式2x≤f(x) (x+1)2恒成立.
(1)求f(1)的值;
(2)求a的取值范围;
(3)若函数g(x)=f(x)+2a|x﹣1|,x∈[﹣2,2]的最小值为﹣1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2(a为实常数).
(1)当a=﹣4时,求函数f(x)在[1,e]上的最大值及相应的x值;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.
(3)若a>0,且对任意的x1 , x2∈[1,e],都有 ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且角φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( )内有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(其中为参数),现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

(1)写出直线和曲线的普通方程;

(2)已知点为曲线上的动点,求到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G: + =1(b>0)的上、下顶点和右焦点分别为M、N和F,且△MFN的面积为4
(1)求椭圆G的方程;
(2)若斜率为1的直线l与椭圆G交于A、B两点.以AB为底作等腰三角形,顶点为P(﹣3,2),求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线
(1)求实数a的值
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为4的正方形,动点在以为直径的圆弧上,则的取值范围是__________

查看答案和解析>>

同步练习册答案