精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线,曲线,点,以极点为原点,极轴为轴正半轴建立直角坐标系.

(1)求曲线的直角坐标方程;

(2)过点的直线于点,交于点,若,求的最大值.

【答案】(1) ;(2)

【解析】试题分析:(1)第(1)问,利用极坐标化直角坐标的公式解答 .(2)第(2)问,

先把直线的参数方程代入曲线C1的直角坐标方程,利用韦达定理求出,再求出,最后代入,求出的最大值.

试题解析:

(1)曲线C1的直角坐标方程为:x2+y2-2y=0;

曲线C2的直角坐标方程为:x=3.

(2)P的直角坐标为(-1,0),设直线l的倾斜角为α,(0<α),

则直线l的参数方程为: , (t为参数,0<α)

代入C1的直角坐标方程整理得,

t2-2(sinα+cosα)t+1=0,

t1t2=2(sinα+cosα)

直线l的参数方程与x=3联立解得,t3

t的几何意义可知,

|PA|+|PB|=2(sinα+cosα)=λ|PQ|=,整理得,

4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=sin(2α)+1,

由0<α <2α

所以,当2α,即α时,λ有最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为4E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形中,,如图1.把沿翻折,使得平面平面,如图2

(Ⅰ)求证:

(Ⅱ)若点为线段中点,求点到平面的距离;

(Ⅲ)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究黏虫孵化的平均温度(单位: )与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:

组号

1

2

3

4

5

6

平均温度

15.3

16.8

17.4

18

19.5

21

孵化天数

16.7

14.8

13.9

13.5

8.4

6.2

他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经计算得

(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)

(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1)

,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线与圆相交于不同的两点,点是线段的中点。

(1)求直线的方程;

(2)是否存在与直线平行的直线,使得与与圆相交于不同的两点不经过点,且的面积最大?若存在,求出的方程及对应的的面积S;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对营销人员有如下规定:

①年销售额 (万元)在8万元以下,没有奖金;

②年销售额 (万元), 时,奖金为万元,且 ,且年销售额越大,奖金越多;

③年销售额超过64万元,按年销售额的10%发奖金.

(1)求奖金y关于x的函数解析式;

(2)若某营销人员争取奖金 (万元),则年销售额 (万元)在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】济南新旧动能转换先行区,承载着济南从“大明湖时代”迈向“黄河时代”的梦想,肩负着山东省新旧动能转换先行先试的重任,是全国新旧动能转换的先行区.先行区将以“结构优化质量提升”为目标,通过开放平台汇聚创新要素,坚持绿色循环保障持续发展,建设现代绿色智慧新城.2019年某智能机器人制造企业有意落户先行区,对市场进行了可行性分析,如果全年固定成本共需2000(万元),每年生产机器人(百个),需另投人成本(万元),且,由市场调研知,每个机器人售价6万元,且全年生产的机器人当年能全部销售完.

(1)求年利润(万元)关于年产量(百个)的函数关系式;(利润=销售额-成本)

(2)该企业决定:当企业年最大利润超过2000(万元)时,才选择落户新旧动能转换先行区.请问该企业能否落户先行区,并说明理由.

查看答案和解析>>

同步练习册答案