精英家教网 > 高中数学 > 题目详情
14.若不等式x+lnx≤kx+b≤x2对?x∈(0,+∞)恒成立,则k+3b的值-1.

分析 不等式化为x+lnx≤kx+b对?x∈(0,+∞)恒成立且kx+b≤x2对?x∈(0,+∞)恒成立,从而可得b≥-1-ln(k-1),b≤-$\frac{{k}^{2}}{4}$;从而可得-1-ln(k-1)≤-$\frac{{k}^{2}}{4}$恒成立,从而解得k=2,再求b即可.

解答 解:∵x+lnx≤kx+b对?x∈(0,+∞)恒成立,
∴(k-1)x-lnx+b≥0对?x∈(0,+∞)恒成立,
∴k>1,
令f(x)=(k-1)x-lnx+b,f′(x)=k-1-$\frac{1}{x}$;
故f(x)在(0,$\frac{1}{k-1}$)上单调递减,在($\frac{1}{k-1}$,+∞)上单调递增;
故f($\frac{1}{k-1}$)=(k-1)$\frac{1}{k-1}$-ln$\frac{1}{k-1}$+b≥0,
即b≥-1-ln(k-1);
∵kx+b≤x2对?x∈(0,+∞)恒成立,
∴x2-kx-b≥0对?x∈(0,+∞)恒成立,
∴(x-$\frac{k}{2}$)2-$\frac{{k}^{2}}{4}$-b≥0对?x∈(0,+∞)恒成立,
∴-$\frac{{k}^{2}}{4}$-b≥0,
故b≤-$\frac{{k}^{2}}{4}$;
故-1-ln(k-1)≤-$\frac{{k}^{2}}{4}$恒成立,
令h(k)=$\frac{{k}^{2}}{4}$-1-ln(k-1),
h′(k)=$\frac{k}{2}$-$\frac{1}{k-1}$=$\frac{(k+1)(k-2)}{2(k-1)}$,
故h(k)在(1,2)上是减函数,在(2,+∞)上是增函数;
且h(2)=0,
故k=2;
故-1≤b≤-1,
故b=-1;
故k+3b=-1;
故答案为:-1.

点评 本题考查了恒成立问题的应用,同时考查了不等式的应用,利用函数的思想化为函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么∠FEG为(  )
A.60°B.30°C.120°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-lnx+6.
(1)若函数f(x)的极值点为x=$\frac{\sqrt{2}}{2}$,求函数f(x)在点(1,f(1))处的切线方程;
(2)当x∈(0,+∞)时,若关于x的不等式f(x)+lnx<x-ln(x+1)+6恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}满足a1=2,an+1=an2,则数列{an}的通项公式为 an=${2}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列命题为真命题的有①②(填上所有真命题的序号)
①若数列{an}满足an+1=2an(n∈N*),则数列{an}为等比数列;
②若数列{an}为等差数列,则数列{2${\;}^{{a}_{n}}$}为等比数列;
③若数列{an}为等比数列,则数列logaan(a>0,a≠1)为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=cos(2x-$\frac{π}{3}$)在x={x|x=kπ+$\frac{π}{6}$k∈Z}时,取到最大值1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=$\left\{\begin{array}{l}{a+{x}^{2},x≥0}\\{xcos\frac{1}{x},x<0}\end{array}\right.$,试确定常数a的值.使f(x)在(-∞,+∞)内连续.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求极限.
$\underset{lim}{x→∞}$$\frac{3{x}^{2}-2x+1}{4{x}^{3}+3{x}^{2}-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则x-2y的取值范围是[-4,1].

查看答案和解析>>

同步练习册答案