【题目】已知函数f(x)=|x+m|+|2x-1|.
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范围.
【答案】(1);(2).
【解析】
(1)零点分段法分类讨论解绝对值不等式即可.
(2)由题意可知f(x)≤|2x+1|在上恒成立,可去掉绝对值|x+m|≤2,解绝对值不等式,结合不等式的解集即可求解.
(1)当m=-1时,f(x)=|x-1|+|2x-1|,
当x≥1时,f(x)=3x-2≤2,所以1≤x≤;
当<x<1时,f(x)=x≤2,所以<x<1;
当x≤时,f(x)=2-3x≤2,所以0≤x≤,
综上可得原不等式f(x)≤2的解集为.
(2)由题意可知f(x)≤|2x+1|在上恒成立,
当x∈时,f(x)=|x+m|+|2x-1|=|x+m|+2x-1≤|2x+1|=2x+1,所以|x+m|≤2,
即-2≤x+m≤2,则-2-x≤m≤2-x,且(-2-x)max=-,(2-x)min=0,
因此m的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.
(1)求椭圆的方程;
(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥D-ABC中,,且,,M,N分别是棱BC,CD的中点,下面结论正确的是( )
A.B.平面ABD
C.三棱锥A-CMN的体积的最大值为D.AD与BC一定不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省从2021年开始将全面推行新高考制度,新高考“”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为,,,,,等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法分别转换到、、、、五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:
等级 | |||||
比例 | |||||
赋分区间 |
而等比例转换法是通过公式计算:
其中,分别表示原始分区间的最低分和最高分,、分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为,时,等级分分别为、
假设小南的化学考试成绩信息如下表:
考生科目 | 考试成绩 | 成绩等级 | 原始分区间 | 等级分区间 |
化学 | 75分 | 等级 |
设小南转换后的等级成绩为,根据公式得:,
所以(四舍五入取整),小南最终化学成绩为77分.
已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:
成绩 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人数 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;
(2)从化学成绩获得等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆过点,离心率为.分别是椭圆的上、下顶点,是椭圆上异于的一点.
(1)求椭圆的方程;
(2)若点在直线上,且,求的面积;
(3)过点作斜率为的直线分别交椭圆于另一点,交轴于点,且点在线段上(不包括端点),直线与直线交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线与轴轴分别交于两点.
①设直线斜率分别为,证明存在常数使得,并求出的值;
②求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com