精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ2

1M为曲线C1上的动点,点P在线段OM上,且满足,求点P的轨迹C2的直角坐标方程;

2)曲线C2上两点与点Bρ2α),求△OAB面积的最大值.

【答案】1x2+y121y≠0).(2

【解析】

1)设出的极坐标,然后由题意得出极坐标方程,最后转化为直角坐标方程为;

(2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得面积的最大值为.

解:(1)设P的极坐标为(ρθ)(ρ0),M的极坐标为(ρ0θ)(ρ00).

由题设知|PO|ρ

4

所以C2的极坐标方程ρ2sinθρ0),

因此C2的直角坐标方程为x2+y121y≠0).

2)依题意:|OB|ρ22sinα

于是△OAB面积:S

时,S取得最大值

所以△OAB面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩共分五组,得到如下的频率分布表:

组号

分组

频数

频率

第一组

第二组

第三组

第四组

第五组

1)请写出频率分布表中的值,若同组中的每个数据用该组区间的中间值代替,请估计全体考生的平均成绩;

2)为了能选出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样的方法抽取名考生进入第二轮面试,求第组中每组各抽取多少名考生进入第二轮的面试;

3)在(2)的前提下,学校要求每个学生需从两个问题中任选一题作为面试题目,求第三组和第五组中恰好有个学生选到问题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2为椭圆C的左、右焦点,椭圆C过点M,且MF2F1F2.

1)求椭圆C的方程;

2)经过点P20)的直线交椭圆CAB两点,若存在点Qm0),使得|QA||QB|.

①求实数m的取值范围:

②若线段F1A的垂直平分线过点Q,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:

1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)

2)利用的相关性及表格中前8组数据求出之间的回归方程;(结果保留两位小数)

3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.

附:相关数据:

表格中前8组数据的一些相关量:

相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:

相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Snn2+pn,且a4a7a12成等比数列.

1)求数列{an}的通项公式;

2)若bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

1)若上存在两个极值点,求的取值范围;

2)若,函数与函数的图象交于,且线段的中点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校李老师本学期任高一A班、B班两个班数学课教学,两个班都是50个学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是( )

A. A班的数学成绩平均水平好于B班

B. B班的数学成绩没有A班稳定

C. 下次B班的数学平均分高于A班

D. 在第一次考试中,A、B两个班总平均分为78分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)若,求函数的极值和单调区间;

II)若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)解不等式:

(Ⅱ)当时,函数的图象与轴围成一个三角形,求实数的取值范围.

查看答案和解析>>

同步练习册答案