精英家教网 > 高中数学 > 题目详情
19.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)在一个周期内图象如图所示.
(1)试确定A,ω,φ的值.
(2)求y=$\sqrt{3}$与函数f(x)的交点坐标.

分析 (1)通过函数的图象的最高点求出A,利用图象求出函数的周期,得到ω,图象过($\frac{π}{2}$,2)点,求出φ的值;
(2)求出函数的解析式,利用f(x)=2sin($\frac{1}{2}$x+$\frac{π}{4}$)=$\sqrt{3}$,求出y=$\sqrt{3}$与函数f(x)的交点坐标.

解答 解:(1)A=2,$\frac{T}{2}=\frac{7π}{2}-\frac{3π}{2}=2π$,T=4π,ω=$\frac{2π}{4π}$=$\frac{1}{2}$,
将($\frac{π}{2}$,2)代入f(x)=2sin($\frac{1}{2}$x+φ),可得2=2sin($\frac{π}{4}$+φ),
∵0<φ<π,∴φ=$\frac{π}{4}$;
(2)f(x)=2sin($\frac{1}{2}$x+$\frac{π}{4}$)=$\sqrt{3}$,sin($\frac{1}{2}$x+$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}$x+$\frac{π}{4}$=2kπ+$\frac{π}{3}$或$\frac{1}{2}$x+$\frac{π}{4}$=2kπ+$\frac{2π}{3}$,
∴x=4kπ+$\frac{π}{6}$或x=4kπ+$\frac{5π}{6}$(k∈Z),
∴y=$\sqrt{3}$与函数f(x)的交点坐标为(4kπ+$\frac{π}{6}$,$\sqrt{3}$)或(4kπ+$\frac{5π}{6}$,$\sqrt{3}$)(k∈Z).

点评 本题是中档题,考查三角函数的解析式的求法,函数的图象的应用,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩∁UB(  )
A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③$f(\frac{1}{3})>1$.
(1)求证:f(x)在R上是单调增函数;
(2)若f(4x+a•2x+1-a2+2)≥1对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.艾萨克•牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)零点时给出一个数列{xn}:满足${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}为牛顿数列,设${a_n}=ln\frac{{{x_n}-2}}{{{x_n}-1}}$,已知a1=2,xn>2,则{an}的通项公式an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{1}{\sqrt{x-2}}$+lg(5-x)的定义域为(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某商店每双皮鞋的进货价为80元,根据以往经验,以每双90元销售时,每月能卖出400双,而每加价1元或减价1元销售时,每月销量会减少或增加20双,为了每月获取最大利润,商店应如何定价?每月的最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线y=$\frac{1}{3}$x3-2在点(1,-$\frac{5}{3}$)处切线的斜率是(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.$y={2^x}+\frac{1}{2^x}$B.$y=sinx+\frac{1}{x}$C.y=x2+cosxD.$y=x+\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C的对边分别为a,b,c,bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(1)求证:a,c,b成等差数列;
(2)若C=$\frac{π}{3}$,△ABC的面积为2$\sqrt{3}$,求c.

查看答案和解析>>

同步练习册答案