精英家教网 > 高中数学 > 题目详情
设函数f(x)=lg(
2
x+1
-1)
的定义域为集合A,函数g(x)=
1-a2-2ax-x2
的定义域为集合B.
(1)求证:函数f(x)的图象关于原点成中心对称.
(2)a≥2是A∩B=Φ的什么条件(充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件)?并证明你的结论.
分析:(1)由
2
x+1
-1>0,可求得A=(-1,1),f(x)的定义域关于原点对称,利用奇函数的定义可判断f(-x)=-f(x);
(2)由于B=[-1-a,1-a],当a≥2时,-1-a≤-3,1-a≤-1,可证得A∩B=∅,反之,可取-a-1=2,求得a=-3,于是得到答案.
解答:证明:(1)∵
2
x+1
-1>0,
x-1
x+1
<0,…(1分)
∴-1<x<1…(3分)
∴A=(-1,1),
故f(x)的定义域关于原点对称…(4分)
又f(x)=lg
1-x
x+1
,则 f(-x)=lg
1+x
-x+1
=lg(
1-x
x+1
)-1
=-lg
1-x
x+1
,…(6分)
∴f(x)是奇函数.
即函数f(x)的图象关于原点成中心对称…(7分)
(2)∵B={x|x2+2ax-1+a2≤0},
∴-1-a≤x≤1-a,即B=[-1-a,1-a]…(9分)
当a≥2时,-1-a≤-3,1-a≤-1,
由A=(-1,1),B=[-1-a,1-a],有A∩B=∅…(10分)
反之,若A∩B=∅,可取-a-1=2,则a=-3,a小于2…(11分)
所以,a≥2是A∩B=∅的充分非必要条件…(12分)
点评:本题考查必要条件、充分条件与充要条件的判断,考查对数函数的定义域,函数的奇偶性,着重考查学生综合分析问题、解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lg(2x-3)(x-
1
2
)
的定义域为集合A,函数g(x)=
-x2+4ax-3a2
(a>0)的定义域为集合B.
(1)当a=1时,求集合A∩B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(ax)•lg
a
x2

(1)当a=0.1,求f(1000)的值.
(2)若f(10)=10,求a的值;
(3)若对一切正实数x恒有f(x)≤
9
8
,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下列命题:
①设a,b为正实数,若a2-b2=1,则a-b<1;
②已知a>2b>0,则a2+
8
b(a-2b)
的最小值为16;
③数列{n(n+4)(
2
3
)n}中的最大项是第4项

④设函数f(x)=
lg|x-1|,x≠1
0,x=1
,则关于x的方程f2(x)+2f(x)=0有4个解.
⑤若sinx+siny=
1
3
,则siny-cos2x的最大值是
4
3

其中的真命题有
①②③
①②③
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(x+
x2+1
)

(1)确定函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)证明函数f(x)在其定义域上是单调增函数.

查看答案和解析>>

同步练习册答案