【题目】(本小题满分13分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
【答案】(1)见解析;(2)甲.
【解析】
试题
(1)根据所给的两组数据,用十位做茎,个位做叶,写出茎叶图,根据乙组数据有8个数字,这组数据的中位数是最中间两个数的平均数,乙组数据的中位数为85.
(2)根据所给的两组数据,分别求出两组数据的平均数,再求出两组数据的方差,比较所得的两组结果,甲和乙的平均数相同,甲的方差较小,成绩比较稳定.
试题解析: (1)作出茎叶图如下:
(2)由题意可得:
= (78+79+81+82+84+88+93+95)=85,
= (75+80+80+83+85+90+92+95)=85.
所以= [(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
= [(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
∵=, < ∴甲的成绩较稳定,派甲参赛比较合适.
科目:高中数学 来源: 题型:
【题目】已知椭圆C中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆+=1(a>b>0)上的点P到左,右两焦点F1,F2的距离之和为2,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在表中,如何设计甲、乙两种货物应各托运的箱数可以获得最大利润,最大利润是多少?
货物 | 体积箱 | 重量箱 | 利润百元箱 |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托运限制 | 24 | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆: 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.
(1)求椭圆的方程;
(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的
坐标;若不存在说明理由;
(3)若过点作直线的平行线交椭圆于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛成绩的平均数、众数、中位数。(不要求写过程)
(3) 从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均在35微克/立方米以下空气质量为一级,在35微克/立方米75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.北方某市环保局从2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如下图所示(十位为茎,个位为叶).
(1)15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数,求的分布列;
(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆的顶点, 为椭圆的左焦点且椭圆经过点.
(1)求椭圆的方程;
(2)过椭圆的右顶点作斜率为的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com