精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为

(1)求抛物线的方程;

(2)若点的横坐标为,直线与抛物线有两个不同的交点 与圆有两个不同的交点,求当时, 的最小值.

【答案】(1)(2)

【解析】试题分析:(1)由圆的性质可得Q点纵坐标 ,根据抛物线定义可得 即得抛物线方程(2)联立直线方程与抛物线方程。利用韦达定理及弦长公式可得,利用垂径定理可得,这样得到关于k的函数关系式,最后利用导数求其最值。

试题解析:(1)F抛物线C:x2=2py(p>0)的焦点F,

设M,,由题意可知,

则点Q到抛物线C的准线的距离为,解得,

于是抛物线C的方程为

(Ⅲ)若点M的横坐标为,则点M,

可得,

,

,

,

于是,

,

,,

时,,

即当.

故当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校数学系2016年高等代数试题有6个题库,其中3个是新题库(即没有用过的题库),3个是旧题库(即至少用过一次的题库),每次期末考试任意选择2个题库里的试题考试.

(1)设2016年期末考试时选到的新题库个数为,求的分布列和数学期望;

(2)已知2016年时用过的题库都当作旧题库,求2017年期末考试时恰好到1个新题库的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的 列联表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;

(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?

0.050

0.010

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.

(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;

(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义在R上的奇函数x<0f(x)12x.

(1)求函数f(x)的解析式;

(2)画出函数f(x)的图像;

(3)写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(1x)g(x)loga(1x)(a>0a1).

(1)a2函数f(x)的定义域为[363]f(x)的最值;

(2)求使f(x)g(x)>0x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

同步练习册答案